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Chapter 1

Introduction

This thesis is about proof checking in type theory. We will investigate the question
how to mechanically verify mathematical proofs. The computer systems we consider
are based on a type-theoretical framework. The method we follow is to develop a
few representative case studies. This gives us the experience to draw conclusions
and to give recommendations. In order to formalize the theorems presented in the
case studies, we first have to develop a library of formalized mathematics. We will
do this from scratch. During this development we will encounter several choices to
make and problems to solve. One particular problem, namely equational reasoning,
is studied in more depth and a method for dealing with it in a convenient way is
presented in a separate chapter.

1.1 Motivation

Hardware and software systems belong to the most complex artifacts produced
by the homo sapiens. These systems have appeared relatively late in the human
enterprise, some 50 years ago. The rise of these systems marked the beginning of a
new phase in the industrial revolution.

It is remarkable that one of the few possible classes (arguably the only class)
of ‘objects’ more complex than IT (Information Technology) products, already has
been around more than two millennia. We mean the timeless works of mathematics
with its concepts, computations and proofs. One of the early high points in this
realm, paying proper attention to all these three aspects, consists of the works of
Archimedes (287-212 B.C.).

There appears to be a striking difference between the quality of IT systems and
that of mathematics. The IT systems, notably the software, often contain bugs:
they do not run as they are intended to. If one buys a disc with a program on it,
then one usually sees that there is a warranty for the proper functioning of the disc,
but not for that of the program itself! As embedded software is used in many vital
components of industrial products, like rockets, airplanes, power plants and money
transfer systems, the bugs in these systems have caused a lot of damage and even
fatalities. It has been estimated that the bug in the Pentium chip a few years ago
has caused a loss of 480 million US$ to the manufacturer. See (Peterson 1995) for
other cases and documentation.

Mathematics on the other hand appears to be usually correct. True, also math-

1



2 CHAPTER 1. INTRODUCTION

ematical papers sometimes contain errors. These are either found by the author, by
some expert reader (who possibly wants to use the result) or are left unnoticed. In
some sense this is analogous to the situation with errors in IT systems. But there is
an intrinsic reason to believe that present day software systems contain comparable
more bugs than mathematical papers.

Before giving this reason, let us look at the cause of errors in software. The
reason is simple. Programs are large, sometimes consisting of more than a million
lines, and they have a refined action. A small oversight in one of the million lines
is enough to introduce an error. The complexity of software is also the underlying
cause of the ‘second software crisis’: there are simply not enough people capable of
producing the relevant software needed for todays industry. But worse is the first
and principal crisis: it is hard—if not impossible—to produce satisfactory software
on time. Both crises are caused by the difficulty to instruct a computer to do
simple tasks that humans seem to do without effort, let alone more difficult tasks.
Since computers do these tasks much more efficiently than humans, the reward for
this endeavor to build software has been considered worthwhile. The mentioned
complexity is also the reason why testing IT systems is of limited value, since the
number of cases to be checked is more than astronomical. An exhaustive test simply
will take too long.

Back to mathematics. The statement that the work of mathematicians in general
is more reliable than that of IT specialists is puzzling, since we also said that
mathematics is more complex than IT. The reason for the reliability of mathematics
is that this discipline has proofs. Proofs may be very complex, indeed more complex
than software; but they are crystal clear. This clarity is a tool for the mathematician
to purify his work from errors. The following metaphor may explain the situation
better. Trying to find a proof is like searching for the correct path in a labyrinth to
the exit. The search is complicated and so is the resulting path. But the fact that
the path correctly leads to the exit can be verified without effort. This means that
it is very easy to specify the correctness of a path: just follow the path and see it
leads to the goal ‘without cheating’.

Given this situation, the challenge is to design IT systems such that the fulfill-
ment of their required properties can be warranted with the same degree of certainty
as the validity of mathematical theorems.

Formal methods in IT design

One possibility is to apply the method of proving to the construction of IT systems.
This idea came up in the late 1960s under the name ‘formal methods’. The idea was
to have a language in which one could describe designs d of IT systems together with
the specification S of the desired properties of the system. If one then could formally
prove S(d), this would give the highest possible warranty that a realization of the
design d has its required behavior. Proving out of the blue is usually impossible, so in
the proof of S(d) one may assume that components di of d satisfy a subspecification
Si, i.e. that Si(di) holds. These components di either have to be constructed again,
in which case the story is repeated; or are bought from another manufacturer, in
which case the seller is responsible that Si(di) holds. Eventually this procedure
leads to elementary components de whose properties Se are warranted by the laws
of nature.

Although the idea of using formal systems is in principle a good one, the ex-
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isting technology is inadequate to deal with some huge problems. The dominating
programming style is that of imperative languages (including variants like object
oriented programming). This computational model is less apt to be treated by
formal methods in a nice way. The reason is that a substantial program d has a
very large number of different components. This implies that the proof of S(d)
from Si(di) will be complex. This complexity is different from that of mathematical
proofs. Proofs in mathematics are complex because of depth of abstraction. The
intended proof of S(d) from the Si(di) is complex because of their length consisting
of rather trivial steps.

In order to state the mentioned problems, we have to be more explicit about
what needs to be done. Following ideas of (Wupper and Meijer 1997) one can state
this as follows. One wants a system with a given behavior. In order to construct
such a system one writes down a formal specification S of the behavior and a
formal design d of the system. The design will usually be built up from components
d1, . . . , dn, where each di satisfies a subspecification Si. Now one wants to be sure
that the system obeys the required behavior. The best one can strive after is to
prove formally that

S1(d1), . . . , Sn(dn) ` S(d) (+)

i.e. S(d) formally follows from the assumptions S1(d1), · · · , Sn(dn). At this point
there are two problems

1. How do we get the correct specification S?

2. How can we warrant (+), knowing that the proof may be complex and hence
error prone?

A satisfactory answer to problem 2 was given by (de Bruijn 1970). He designed
a language Automath in which proofs can be represented precisely. A statement
(+) being proved by p now becomes

S1(d1), · · · , Sn(dn) `p S(d). (++)

Now problem 2 becomes

2.1. How do we get the so-called proof object p?

2.2. How can we warrant the correctness of (++)?

Problem 2.2 has been addressed satisfactorily by de Bruijn, as he succeeded to
represent statements and proofs in such a way that (++) becomes verifiable by a
small program. A proof checking algorithm with a small program is said to satisfy
the de Bruijn criterion. The final reliability of (++) then can be checked by anyone
who cares to inspect this program (or is willing to write a personal version of it).

So now we are left with problem 1 (how to obtain a formal specification S)
and problem 2.1. (how to obtain a proof-object p). For software written in the
current imperative style problem 1 is already somewhat awkward. Several speci-
fication languages have been proposed, e.g. VDM (Jones 1990). Now the formal
specifications S, S1, . . . , Sn in such a language is in principle of a manageable size.
But the problem usually is whether a formal specification S does express correctly
the intended behavior of the system. Let us call this the specification problem.
The other problem (2.1) of constructing a proof-object P for (++) becomes the
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bottleneck for software written in an imperative style. In fact to achieve (++) for
large imperative programs is very difficult. Most industrial software has not been
verified this way.

In spite of this failure for software verification, the program to prove correctness
of hardware has been successful, see (Goossens 1992, Rushby and von Henke 1993,
Ruess, Shankar and Srivas 1996). This is so because hardware seen from the right
level of abstraction is in general simpler than software. One can state stylistically:

hardware : software = propositional logic : predicate logic.

Since provability in predicate logic is undecidable, this also explains why we have
to use proof objects for the formal verification of software. On the other hand
provability in propositional logic is decidable and hence the verification of hardware
can be done by (reliable) theorem provers. (Actually this is an over-simplification.
Hardware is in fact more complex than the propositional logic level since repeated
hardware patterns and also time considerations ask for predicates.)

This methodology of verified design has been used for more than 15 years (usu-
ally not in the style of de Bruijn, but with all kinds of proof generators). As a result,
hardware nowadays is very reliable. The bug mentioned above in the arithmetic
unit of the first Pentium chip was in fact not found in the hardware, but in the
microcode (software provided by the manufacturer).

Since imperative software is very complex and has insufficient modular structure,
there has not been developed a major activity producing corrections proofs of such
programs. There is a notable exception. Communication protocols are small but
highly important programs, often used as embedded software in telecommunication
systems, remote control consoles and the like. The correctness of these programs
is of vital importance for the proper functioning of these systems. Moreover it is
expensive for the manufacturer to call back systems for a repair. Therefore consid-
erable successful effort is being spent on proving the correctness of implementations
of these communication protocols (Sellink 1996).

In the early 1990s functional programming started to come of age. For this model
of computation each program component is built up in an surveyable modular way1,
i.e. is constructed from a limited number of parts such that the proportion of the
whole is reflected in a clear way from those of the parts. Therefore it is justified to
hope that for functional programming correctness proofs are feasible.

Mathematics

In mathematics there has developed a strong culture for the right formulation of
statements to be proved. Moreover, in many cases already simple statements are a
challenge to be proved. For this reason our case studies come from mathematics.
The goal of these case studies is not so much the construction of mechanically
verified proofs, but rather a study of the technique one needs in order to comfortably
formalize proofs.

Usually, proof-checking of existing mathematics does not have the property that
the specification of the statement to be proved is problematic. On the other hand,
the efficient formalization of proofs is a formidable challenge. One aims at proof-
objects that are not only complete formalizations, but also should be ‘feasible’.

1Functional programming languages have the very important property of referential trans-

parency. Referential transparency forms the basis of modularity.
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This means in the first place that it should be possible for a person that knows the
intuitive proof to produce in a ‘user-friendly way’ the corresponding proof-object
(possibly with the help of an interactive proof development system). It also means
that the resulting proof-objects should not be too large.

We believe that producing case studies in the formalization of mathematics is
of interest for several reasons.

1. There probably will be a positive spin-off for the quest for correctness of IT-
systems, notably for software.

2. The highest possible degree of correctness of mathematics will be warranted.
The role of refereeing by peers will change. The emphasis will shift from
the correctness to the relevance of a result, since correctness already can be
verified mechanically.

3. Complex mathematical notions can be represented exactly on a computer,
even incompatible notions. In this way, systems of so called ‘computer math-
ematics’ (CM) may result in heavy libraries of verified theories, certified al-
gorithms and user friendly tools to help the development of new theories. In
short, experienced mathematicians may be helped by systems of CM in the
same way as they are being helped by systems of Computer Algebra (CA) for
the development of pure and applied mathematics. Also for students there
is a benefit. Systems for CM already have proven to be instrumental for the
craftsmanship of producing mathematical proofs. They help students in de-
veloping awareness of logical steps applied. Students even seem to like doing
mathematics on a computer.

4. It is a challenge for logic and the foundations of mathematics to make feasible
formalization possible. This point will be explained below.

5. Some proofs consists of a large number of cases of similar structure. Systems
for CM can take over the elaborate part of generating all cases. An example
is the proof of the four color theorem by (Appel and Haken 1976), which was
carried out by means of a computer system.

Obstacles

Although mathematics is regarded as an exact science, actually in a sense it is
not exact at all. Namely, most proofs in mathematical journals are in fact merely
sketches which should convince the reader that some asserted theorem does hold.
All proof-steps which ought to be obvious for the reader are left out, leaving only
those parts of the proof which form the essence. We call this informal practice.
Informal practice makes proofs easier to grasp and hence makes it easier to see that
these proofs are indeed correct. On the other hand, we have computers. In order
to let a computer verify a proof, the program needs to obtain all details, and every
tiny logical step of which the proof consists needs to be spelled out. A computer
based proof checker needs a fully formalized proof as input.

Suppose the author of a proof has left out on purpose some side conditions or
some exceptions for the sake of clarity. Usually, the reader will ‘see’ immediately
that this omission is provable indeed. A computer system on the other hand still
needs to verify these omissions in full detail. Usually, this is quite an involved job
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to do. Even worse, in some cases such an exception may not be provable at all
without some (trivial) modifications in the original proof.

We also have to realize that proof checkers have a few inherent weaknesses.
Firstly why should we believe that the proof checker accepts only valid (true) proofs?
How can we be sure that it does not accept some proof that leads to a contradiction?
Since a proof checker is just a piece of software that runs on some equipment, they
are also vulnerable to the weaknesses of IT systems described in the beginning of
this chapter. Following the de Bruijn criterion, we should keep the kernel of a proof
checker as simple as possible. Then anyone could write his own proof checker fairly
easily, and use it as an independent judge. The tools we use to generate proofs
may be as complex as desirable, as long as the resulting proofs can be checked by
a simple system.

On the other hand, we do not wish to work in a system whose proof theoretical
strength is weak. Although we could encode the logic we wish to use, and introduce
mathematical concepts axiomatically, this approach is only suitable for small case
studies. Unless a proof checker provides very powerful tacticals, formalizing large
bodies of mathematical text by means of a minimal verification system seems to be
an extremely tedious job to do.

Secondly, it is very hard to be completely sure that a formalization exactly mod-
els the phenomenon we wish to describe. In order to believe that a given theorem
T we intend to prove is true indeed, we have to make sure that every formalized
definition on which the formalization of the theorem T directly or indirectly de-
pends, exactly models our intention. This may seem easier than it is. We believe
that this modeling problem is one of the most problematic aspects of mechanical
proof verification.

1.2 Proof Assistants

Currently, a variety of computer systems is used in mathematics and the other exact
sciences as an aid for research. Two of the most widespread categories are systems
for numerical analysis and for computer algebra. A numerical analysis package is
capable of making use of the raw processing power of a computer to quickly compute
a possibly extremely large number of real values by approximations. Examples of
these packages are LINALG (Johnson 1992) and ScaLAPACK (Choi, Dongarra,
Pozo and Walker 1992).

Computer algebra systems are more sophisticated in the sense that they use
an exact representation of symbols and formulas instead of approximated values.
Examples of computer algebra systems are Maple (Char, Geddes, Gonnet, Leong,
Monagan and Watt 1992) and Mathematica (Wolfram 1991). Because numerical
analysis systems compute by approximations, they are vulnerable for rounding er-
rors. Computer Algebra systems use a knowledge base of algorithms and rules to
rewrite algebraic expressions into simpler ones. Although computer algebra systems
do not use approximations, even these systems may deliver wrong solutions because
most computer algebra systems do not check all side conditions. For example, tak-
ing the real valued square root of a negative number, or division by zero, is often
undetected and accepted.

Proof assistant systems form a third category. Their emphasis is not on com-
puting values, but on proving theorems. They are especially suited for checking
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results. Proof assistants might be divided into two flavors: proof checking and proof
generation. In general, proof generation systems are limited because most logics
are undecidable. When we use a proof generator to find a proof of some lemma, in
most cases the checker will give up at a certain moment because it has no clue how
to find a proof. Examples of these systems are systems based on resolution logic
like Otter (McCune 1990), and the Boyer-Moore theorem prover Nqthm (Boyer and
Moore 1988). The latter system will ask the user for a hint when it fails to generate
a proof. So in an interactive way, the system can be used to formalize mathematics.
(Shankar 1986, Shankar 1994) has used Nqthm to formalize Gödels second incom-
pleteness theorem and the Church-Rosser theorem. Another very popular proof
assistant system today is PVS (Owre, Rushby and Shankar 1992). PVS is a fairly
user-friendly system, but less reliable.

As proof generation systems get more complex, they will be more vulnerable for
implementation errors. Reliability of proof assistants is crucial. What is otherwise
the point of formalizing mathematics in the first place? Proof verification systems
have a far easier job to do. Namely instead of finding a valid proof, these systems
only have to verify that a given proof follows the rules of logic. Consequently proof
verification systems are easier to build and more likely to be correct. Examples
of proof verification systems are HOL (Gordon 1991) and Isabelle (Nipkow and
Paulson 1992).

As argued above, it is important to be able to independently check formalized
proofs. Proof checkers which are based on type theory have proofs as first class
citizens. This makes it easy to hand over these objects to other people using other
proof checkers. Examples of proof checkers which actually produce proofs are Coq
(Dowek et al. 1993), LEGO (Pollack 1994) and Alf (Magnusson and Nordström
1994). Another advantage of using type theory for formalizing proofs is that we
are encouraged to build constructive proofs only. Although this is not compulsory,
constructive proofs have the advantage that they often contain a computational
content. So for example, suppose we have a constructive proof of a theorem

∀x∃y[φ(x, y)] .

Then a constructive proof for this theorem will contain a function which assigns to
every x a y such that φ(x, y) holds. We will use this fact to get a prime generator
directly from a proof of Euclid’s theorem of the infinity of the set of prime numbers.

1.3 Type theory

The common view that set theory as formulated in first order predicate logic with
equality can serve as a foundation of mathematics is an misconception. Mathemat-
ics consists of defining, reasoning and computing. In ordinary logic, definitions are
usually seen as abbreviations in an auxiliary language that denote their full expan-
sion in the official language. For example in number theory one has the definitions:

Prime(x) := x > 1 & ∀y[(y < x)→ (y | x)→ (y = 1)] (1.1)

y | x := ∃z[z ∗ y = x] (1.2)

If these definitions are seen as abbreviations, then the statement expressing that
there exists a prime twin:

∃x[Prime(x) & Prime(x + 2)]
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stands for:

∃x[ (x > 1 & ∀y[(y < x)→ (∃z[z ∗ y = x])→ (y = 1)]) &
(x + 2 > 1 & ∀y[(y < x + 2)→ (∃z[z ∗ y = x + 2])→ (y = 1)]) ]

For more complicated statements the official translation becomes infeasible. There-
fore a better view on definitions like (1.1) and (1.2) is that the defined expressions
become part of the official language and := stands for an axiomatic extension or a
reduction discussed below.

The way reasoning is captured in first order predicate logic is not bad, except
that natural deduction for intuitionistic logic or a sequent calculus for classical logic
is superior to a Hilbert style formulation.

The main defect of the traditional foundational view is related to computations.
If these are to be captured by the equality in first order logic, then a full proof of
an algebraic equation like:

x3 − y3 = (x− y)(x2 + xy + y2)

becomes unreasonably long, in fact quadratic in the size of the statement itself.
This is caused by the fact that in a chain of equations each time a heavy use is
made of the congruence properties (+ and ∗ preserve equality). Statements like:

b
√

1100c = 33

Prime(1999)

are also extremely awkward to be proved in arithmetic as formalized in predicate
logic with equation.

1.3.1 Flavors

In this section we will briefly present a few lambda calculi. For the reader who wants
a full description of the systems and their properties, we will give some references.

Lambda Calculus

Because of the emphasis we lay on proof checkers which actually produce proof
objects, the class of proof checkers we will study is based on the typed lambda
calculus. The typed lambda calculus stems from the (untyped) lambda calculus
originally introduced by (Church 1932,1933). The lambda calculus is a general
theory of functions and logic, intended as a foundation of mathematics. The reader
is referred to (Barendregt 1984) for an in-depth treatment of the lambda calculus.

Typed Lambda Calculus

The typed lambda calculus is introduced by (Curry 1934, Church 1940). Essentially,
every lambda term has a type associated. In fact, only terms are allowed which can
be typed. Typed lambda calculi are useful for several reasons. Firstly, types can be
used to specify an algorithm. Then an inhabitant of a type, that is, a term which
has the type, is an implementation of the algorithm. In a similar way, types can be
seen as propositions. In that case inhabitants are proofs, and inhabited types are
true propositions. Furthermore, types can be used to make compilations of terms
more efficient.
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Examples of typed lambda calculi are system F and the Calculus of Construc-
tions (CC). The latter calculus is invented by (Coquand and Huet 1985, Coquand
and Huet 1988) and is a lambda calculus with dependent types. In (Coquand 1985)
it is shown that the system CC is consistent. In (Girard, Lafont and Taylor 1989),
the reader finds a treatment of system F and the connection with (constructive)
logic.

In (Barendregt 1992), various systems of typed lambda calculi are presented
in a general framework of the form of a cube, the so-called λ-cube. These eight
systems differ in expressiveness and proof strength. On one extreme we have simply
typed lambda calculus λ→, which can be viewed as a minimal propositional logic
with implication alone. Then we have the polymorphic lambda calculus λ2 which is
essentially system F . A stronger system is λP2 in which we also have predicates. On
the other end of the cube we have the system called λC which has much in common
with higher-order predicate logic. The λ-cube is generalized into so-called Pure
Type Systems (PTS’s) independently by (Berardi 1989) and by (Terlouw 1989).

Sigma types and type hierarchies

A weakness of CC is that it is not possible to directly form the product type A×B,
given two types A and B. In (Luo 1990) a system called the Extended Calculus
of Constructions (ECC) is presented. Essentially, it integrates the (impredicative)
Calculus of Constructions and Martin-Löf’s (predicative) type theory with universes
(Martin-Löf 1972, Martin-Löf 1984). In ECC, product types are introduced by so-
called Σ-types. Luo showed strong normalization for ECC.

Inductive types

Another extension of the Calculus of Constructions are inductive types. In CC it
is possible to define notions with a recursive nature like the natural numbers. The
trick is to encode such a type in terms of a higher order impredicative definition.
Inductive types enable us to formalize recursive definitions in a much more direct
way. For example, to define the natural numbers, we write

µX [X, X → X ] ,

which stands for the smallest type consisting of one inhabitant and a function
which transforms an inhabitant into another one. In fact, we use the following
formalization:

N ≡ µX : ∗.(0 : X, S+ : X → X)

So in this way, the natural numbers are defined as the smallest set N of type ∗,
which consist of two constructors: a constant named 0 and unary function named
S+. Because N is defined as the smallest type, we obtain an induction principle εN:

εN : ∀φ:N→∗. (φ 0)→ (∀n:N. (φn)→(φ(S+ n)))→ (∀n:N. φ n) ,

together with two accompanying rewriting rules:

εN φ f g 0 →ι f

εN φ f g (S+n) →ι g n (εN φ f g n)
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where φ : N→∗, f : φ 0, g : ∀n:N. (φn)→(φ(S+ n)), and n : N. Note that we use the
notion of ι-reduction for rewriting inductive terms. We say that we have defined the
natural numbers inductively. Now it is possible to define other terms by recursion.
For example, we can define the addition by recursion on it’s second argument:

add ≡ λx:N. εN (λy:N.N) 0 (λy:Nλh:N. S+h)

Note that it is also possible to use inductive types instead of sigma types to
define the product A×B of two given types A and B.

prod ≡ λA:∗λB:∗µX :∗. (tuple : A→ B → X)

Term rewriting

Besides β- and ι-reduction, we also use in a few very specific cases ρ-reduction.
ρ-reduction allows us to add arbitrary rewriting rules. So this is potentially very
dangerous, as we could add a rule which rewrites true into falsum. But used with
great care, in some circumstances it will be extremely useful. In Chapter 5 we
implement an algorithm to automatically verify equations of a class of algebraic
structures. This is done by carefully adding the rewrite-rules of the Knuth-Bendix
completion of the algebraic structure.

Delta reduction

As mentioned before, we wish to have definitions as part of our type theory. Then
we are able to attach a name to a term. Definitions are used both for defining
mathematical objects, as for naming lemmas and theorems. The mechanism used
to unfold a definition is called δ-reduction. The type checker we use is able to
automatically unfold definitions when necessary.

Summarizing

So we end up using a type system with the following properties:

– Calculus of constructions for higher order predicate logic.

– Conversion (β-reduction) for computations.

– δ-reduction for definitions.

– Inductive types (via ι-reduction) also for definitions and computations.

– ρ-reduction which enables us to add rewriting rules.

– Cumulative type hierarchies and sigma types.

The type checker which implements all these features is LEGO (Luo and Pollack
1992). LEGO is designed and implemented by Randy Pollack. It is coded in New
Jersey Standard ML. LEGO is freely available from the Internet. It is remarkable
that LEGO also implements another concept, namely argument synthesis. Argu-
ment synthesis is the ability of the type checker to fill in certain types in a term we
left out.
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1.4 Description

This thesis is divided into four parts. The first chapter is about logic. We will
present different kinds of logic, and the connection with type theory.

Next we will develop a small library of mathematical concepts, like sets, func-
tions, structures and some analysis. The main emphasis is on constructive defini-
tions, although we define the real number system with a decidable equality relation.

The library is used in Chapter 4 where we present four case studies. The first
one is to make clear how logical reasoning is done in an interactive way on a proof
checker. Another case study is used to show the difficulties of equational reasoning.
The last case study is the ambitious goal to fully formalize the Fundamental Theo-
rem of Algebra. Its purpose is to get an understanding of the question whether it is
possible to formalize large bodies of mathematical texts into type theory. As we will
see, it turned out that the formalization could not be completed within reasonable
time.

We spend a separate chapter to study equational reasoning. We propose a
method which enables us to use the type checker to automatically verify equational
reasoning.





Chapter 2

Representing Logic

Various logical systems may differ in their expressive power and in their proof-
theoretic strength. The simplest logical system is first order minimal proposition
logic. It does not possess predicates, nor connectives besides the implication alone,
nor any quantifications. At the other end of the spectrum we have higher order
predicate logic. The system that we will use in the following chapters is found in
between. We will use second order logic with universal quantification and implica-
tion alone. The other logical connectives are defined impredicatively. Furthermore,
in order to be able to express mathematical notions, we will also permit predicates.
So we will work in second order predicate logic. Also we add inductive types. These
are quite convenient for defining mathematical objects with a recursive structure.

In this chapter we will first give a brief overview of the history of logic. It is by
no means complete and is only intended to give a context to the logical system we
use. The reader is referred to (van Dalen 1978) for a more in-depth treatment of
this topic. Next, we show how we can formalize these systems into type theory.

2.1 Relevant views on logic

The first works on logic are by Aristotle who wrote his Organon in the fourth
century B.C. Only in 1854, G. Boole introduced the first logical system (Boole 1854).
Then it was Frege who gave the first formal description of mathematical logic. In
his Begriffschrift (Frege 1879), he presented a formal system for first order logic.
Hilbert used what is called the axiomatic method (Hilbert and Bernays 1934, 1939).
Brouwer revised the idea of provability in his intuitionistic logic. Following ideas
attributed to R. Pollack, we can view logic from different angles.

Formalistic approach

We call a system formal if we can give a precise definition of its syntax and the
derivation rules. Examples of formal systems are Peano arithmetic and predicate
logic. Also Hilbert’s Grundlagen der Geometrie (1899) is a fine example of the
formalistic approach. In this work, he introduces geometric objects like points as
given, without giving it any interpretation. Then he formulates the properties that
these objects should obey. Formalists wish to axiomatize all of mathematics.

13



14 CHAPTER 2. REPRESENTING LOGIC

Logicistic approach

The main idea of the logicism is to identify mathematics and logic. Frege defined
mathematical concepts in terms of logic. To do so, he gave a very precise description
of logic and enriched the power of expression. In (Frege 1879), propositional logic
is based on a abstract notion of truth values.

Mathematical logic as founded by Frege was elaborated by Whitehead and Rus-
sell. Their Principia Mathematica (Whitehead and Russell 1910–1913) can be
viewed as the culmination of logicism.

Intuitionistic approach

The Dutch mathematician Brouwer approached logic from a completely new point
of view (Brouwer 1907). He rejected the principle of boolean values which assigns
to every sentence a truth value. In Brouwer’s view, mathematical objects are cre-
ated by mental constructions. Intuitionists believe that logic rests on mathematics.
Where classical logic is descriptive by nature, constructive logic focuses attention on
the dynamic interaction of the individual with the mathematical universe (Mines,
Richman and Ruitenburg 1988, Chapter 1, Section 1). To prove a theorem, we have
to give a construction of a proof.

In order to reason, intuitionists gave a new interpretation to the logical connec-
tives. Let P and Q be propositions, A a set and φ(x) a predicate.

– A proof of P & Q consists of a proof of P and a proof of Q, just as in classical
mathematics.

– To prove P ∨ Q, we must either prove P or prove Q, whereas in classical logic
it would be possible to prove P ∨ Q without proving P or Q.

– A proof of P → Q consists of a construction which transforms any proof of P

into a proof of Q.

– The negation of P is defined as P → ⊥, where ⊥ is some contradiction. So
to prove ¬P , we have to show how to transform a proof of P into a proof of
absurdum.

– A proof of ∀x:A. φ(x) consists of a construction that assigns to every a : A a
proof of φ(a).

– A proof of ∃x:A. φ(x) consists of a construction which gives a a : A and a
proof of φ(a).

The inductively defined logical connectives presented in Definition 2.2.3 fit perfectly
well in the view-point of logic being part of mathematics.

2.2 Logic formalized

Let us switch focus and investigate how we can formalize the various logical paradigms
in type theory.
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Axiomatic formalization

Following the formalistic tradition, we encode propositional logic axiomatically.
Note that most logical connectives come with introduction and elimination rules.

2.2.1. Definition. (i) We introduce a type of propositions prop, and a type func-
tion T assigning to each proposition the type of its proofs.

prop : ∗
T : prop→ ∗

(ii) We axiomatize the implication connective together with proof constructors
for introduction and elimination as follows.

imp : prop→ prop→ prop

impe : Πα, β:prop. (T(impα β))→ (Tα)→ (Tβ)

impi : Πα, β:prop. ((Tα)→ (Tβ))→ T(impα β)

(iii) In a similar way we introduce falsum and the negation.

fls : prop

flse : (T fls)→ Πα:prop. Tα

not : prop→ prop

≡ λα:prop. impα fls

notDN : Πα : prop.(T(not (notα))→ Tα

In a similar way, all the other connectives can be introduced axiomatically. The
first Automath Translation AUT-68 (van Benthem Jutting 1994) used a system very
similar to this one to encode classical minimal predicate logic.

Suppose we work in the type system λP2 (one of the eight systems of the λ-cube,
see Section 1.3.1). If we substitute the type ∗ for prop, and the identity for T , we
have formalized second order predicate logic in a more straightforward way. Then
we also should replace (impAB) by (A→B). This idea is called the propositions-
as-types interpretation of (de Bruijn 1970, Howard 1980). This interpretation was
used for the AUTO-QE system. See (Barendregt 1992) for more details on the
propositions-as-types interpretation.

Impredicative formalization

In the logicistic spirit we define in type theory the logical connectives ¬, &, ∨ and
∃ by second order definitions.
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2.2.2. Definition. Define the logical connectives impredicatively.

⊥ : ∗
≡ ΠX :∗. X

¬ : ∗ → ∗
≡ λα:∗. α→ ⊥

∨ : ∗ → ∗ → ∗
≡ λα:∗ λβ:∗ΠX :∗. (α→X)→(β→X)→X

& : ∗ → ∗ → ∗
≡ λα:∗ λβ:∗ΠX :∗. (α→β→X)→X

∃ : ΠT :∗. (T→∗)→ ∗
≡ λT :∗λφ:T→∗ΠX :∗. (Πt:T. (φ t)→X)→X

Other logical connectives can be defined in terms of the previous ones. For example
logical equivalence can be defined as follows.

iff : ∗ → ∗ → ∗
≡ λα, β:∗. (α→β) & (β→α)

By definition, we get the introduction rules for the impredicatively defined con-
nectives for free. The elimination rules are easily provable. Remark that if we use
a type system with type hierarchies, we may raise the type of T in the definition of
∃ from ∗ to 2, or even higher.

Propositions-as-Types

One of the advantages of the propositions-as-types paradigm is that it follows closely
the intuitionistic tradition. Suppose we can prove in a logic L the claim that A

follows from the assumptions Γ. Formally, we prove this by showing that

Γ `L A .

A formula A in L corresponds with a term [A] of type ∗ in type theory. We call
an inhabitant p of [A] a proof object. This proof object is a faithful encoding of a
proof for A. So,

[Γ] `λ p : [A] .

When we extend our type theory with inductive types we do not need the second
order logic anymore to define the logical connectives. Some logicians consider second
order logic as non-constructive. There seems to be less resistance against inductive
types. This is because inductive types are constructed from base elements. On the
other hand, some stronger versions of the elimination principle of inductive types
are more or less disputed.

2.2.3. Definition. Define the logical connectives inductively in first order minimal
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predicate logic with inductive types.

⊥ : ∗
≡ µX :∗. ()

¬ : ∗ → ∗
≡ λα:∗. α→ ⊥

∨ : ∗ → ∗ → ∗
≡ λα:∗λβ:∗µX :∗. (inl : α→X, inr : β→X)

& : ∗ → ∗ → ∗
≡ λα:∗λβ:∗µX :∗. (pair : α→β→X)

∃ : ΠT :∗. (T→∗)→ ∗
≡ λT :∗ λφ:T→∗µX :∗. (exintro : Πt:T. (φ t)→X)

As opposed to the impredicatively defined connectives, we get the elimination rule
for free. This rule is namely precisely the elimination principle of the corresponding
inductive type. The introduction rules we get for free as well from the constructors.

In second order predicate logic with inductive types, the characterization of the
connectives defined in definitions 2.2.2 and 2.2.3 are provably equivalent. Remark
that for reasons of consistency, the inductive definition of ∃ does not permit T to be
quantified over types higher than ∗. In some cases this can be rather inconvenient.
This restriction does not hold for the impredicative version of ∃.

We summarize the different systems in the following table.

1 Aut Aut LEGO ∗ Coq
→, ∀ Propositions-as-types
¬, &
∨ Encoded Second Order Inductive
∃

The column ‘1 Aut’ stands for the first automath translation, which is purely
an encoded logic. The other Automath systems (the so called second Automath
translations, labeled as ’Aut’) makes use of the propositions-as-types isomorphism.
The type checker LEGO uses an impredicatively defined logic (‘Second Order’).
Our system, labeled ‘∗’, is similar except for the or-connective. As we will see in
Section 3.3.4, we make use of both the inductive as the impredicative defined or-
connective. The type checker Coq (Dowek et al. 1993) is purely based on inductively
defined connectives.

Classical logic

Of course, the law of excluded middle does not hold in intuitionistic logic. If we
really need this law in type theory, we have to extend the context with a constant
of one of the following types.

2.2.4. Definition. Define the laws of excluded middle and double negation.

EM : ∗
≡ Πα:∗. α ∨ ¬α

DN : ∗
≡ Πα:∗. (¬(¬α))→ α
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2.2.5. Lemma. The laws of double negation and excluded middle are equivalent in
intuitionistic logic.

Proof. Well-known.

2.2.6. Definition. We can encode classical propositional logic using inductive
types as follows. For an explanation of the notation εbool . . . =⇒, see Appendix A.1.3.

bool : ∗
≡ µX :∗. (false : X, true : X)

istrue : bool→ ∗
≡ εbool false =⇒ ⊥

true =⇒ (⊥→⊥)
neg : bool→ bool

≡ εbool false =⇒ true

true =⇒ false

or : bool→ bool→ bool

≡ εbool false =⇒ λx:bool. x
true =⇒ λx:bool. true

Note that as expected,

Πx:bool. (istrue (neg (negx)))→ (istruex)

is provable by induction on x.
Using the classical truth values bool, it becomes straightforward to define func-

tions and predicates by cases. For let T be a type, h1, h2 : T → T and φ : T → bool.
If we wish to define a function f such that

f(x) = h1(x) if φ(x)
h2(x) otherwise ,

we can do this as follows:

f : T → T → T

≡ λx:T. (εbool true =⇒ (h1 x)
false =⇒ (h2 x)) (φx) .

This is not possible for the impredicatively defined or-connective. In that case
we obtain an elimination principle into propositions, not into types. However, in
Section 3.3.4 we will show how we can strengthen the or-connective in order to
achieve case distinction.



Chapter 3

Representing Mathematical

Notions

To be able to develop mathematical proofs in a proof development system, we have
to define the standard notions in type theory. Some notions are of set-theoretic
nature, like sets, subsets and functions. Some are algebraic, like monoids, or fields.
Others have to do with analysis, of which the natural numbers and reals are exam-
ples.

3.0.1 Validation contra verification

In general we see a trade-off between the complexity of definitions and the complex-
ity of the proofs of properties concerning these definitions. If we choose compact
and simple definitions, we often need to spend more effort in proving the desired
propositions. But on the other hand, we could try to enhance our definitions in
order to get simpler and more straightforward proofs. But then the definitions usu-
ally get more complex and less clear. For two reasons we have a strong preference
for simple definitions as opposed to short proofs.

First, if we formalize mathematics, it is of great importance that all definitions
are as clear and transparent as possible. We need to be sure that all formal defi-
nitions correspond precisely to the concepts and notions we have in mind: i.e. we
have to validate the formal definitions. Gaining this insight is more delicate than
formally verifying correctness of proofs. The latter can even be done by a machine.
So we believe that we should focus on short and simple definitions, and accept that
in some cases proofs may get more complex.

Second, theorem provers are primary designed for building proofs interactively
in a more or less convenient way. In order to prove a proposition, the theorem prover
helps us in finding an appropriate list of tactics. Using these tactics, the theorem
prover produces the proof object which represents a proof of the proposition. On
the other hand, these tactics were not designed for constructing definitions in an
interactive way. Of course in type theory one could regard a definition as a proof of
a proposition. So we could use the theorem prover to ‘build’ a definition, but this
approach seems a bit awkward.

19
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Notation

In this chapter, we will develop a notation for mathematics. This notation should
be easily readable for humans. But it should be precise and formal in such a way
that it can be canonically transformed into the syntax of the proof checker. We will
call this notation Pseudo LEGO (see Appendix A.1.2).

Throughout this thesis, we will present formalizations of lemmas, definitions,
and assumptions in a uniform manner. We have to be very careful to separate two
levels of formality. Namely, we should distinguish between informal mathematics
and mathematics formalized in type theory. The latter will generally be typeset in
type writer font. Lemmas are introduced as follows.

Lemma. Statement S is true.

Name : S

≡ Proof

Note that S will often be of type PROP. If we are not interested in the actual proof-
term Proof we leave it out and replace it by x. . .y. In that case the full proof with
all the details can usually be found in the LEGO library (see Appendix A.3).

In type theory there is no essential distinction between lemmas and definitions.
Both consist of a term, a corresponding type and a name attached to the term.

Definition. Define definiendum as definiens.

definiendum : T

≡ definiens

Often T will be of type SET.
In some occasions we need to assume that a certain statement S holds. We

formalize this by a variable declaration which extends the current context of the
type checker.

Axiom. Assume S is true.
x : S

As part of our pseudo LEGO, we allow the definition of lambda-terms as an
infix operator. We indicate this by writing explicitly the place holders used. An
example is to define the binary operator equality as = .

3.1 Sets

When we want to represent mathematics the first question we encounter is how
to deal with sets. As Bishop wrote, a set is defined by describing what must be
done to construct an element of the set, and what must be done to show that two
elements of the set are equal (Bishop 1967, chapter 3,paragraph 1). This leads us
to the following approaches.

3.1.1 Sets as types

Terms live in types, and elements belong to a set. So it seems to be natural to
define sets as types. The phrase ‘is an element of’ is formalized by ‘has type’. For
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equational reasoning we need an (polymorphic) equivalence relation over types. We
will define Leibniz equality1 for this purpose.

3.1.1. Definition. (i) We need the type of propositions, the type of sets, and a
universe of types.

PROP : SET

≡ ∗
SET : TYPE

≡ 20

TYPE ≡ 21

(ii) Define what it is for a relation to be an equivalence relation. Let T pSET be a
type2, R:T→T→PROP be a relation over T .

reflexive : PROP

≡ Πx:T.Rxx

symmetric : PROP

≡ Πx, y:T. (Rxy)→(R y x)

transitive : PROP

≡ ΠxpT Πy:T ΠzpT. (R xy)→(R y z)→(R xz)

equivalence : PROP

≡ reflexive & symmetric & transitive

(iii) Define Leibniz equality impredicatively.

=L : ΠApSET. A→A→PROP

≡ λApSETλx, y:AΠφ:A→PROP. (φx)→(φy)

(iv) Define the natural numbers by induction.

nat : SET

≡ µX :SET. (zero : X, SN : X→X)

Note that in part ii and iii we make use of argument synthesis. This mechanism
allows us to leave out the applicant in those cases when the type checker is able to
reconstruct the term. So instead of writing ‘=L Axy’, we may drop A and write
‘=L x y’. In fact, pseudo LEGO even allows us to write ‘x =L y’.

3.1.2. Lemma. Obviously, Leibniz equality is an equivalence relation.

ReflL : reflexive =L

≡ x. . .y
SymL : symmetric =L

≡ x. . .y
TransL : transitive =L

≡ x. . .y

1Called after the German philosopher G.W. Leibniz (1646-1716) who investigated mathematical

logic.
2See appendix A.1.1 for an explanation of the principle of argument synthesis and the p notation.
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At first sight it may seem better to define SET on the lowest type-level possible,
namely as the type of propositions ∗. In order to enable the formation of the set of
propositions and the set of predicates, we raise the type SET to 20. Then we have
that ∗ lives in SET. In Section 3.3.2 we will see that this choice is convenient.

As long as we deal with atomic constructions, Leibniz equality is fine. So for
example Leibniz equality is suitable for equality over inductive types like the nat-
ural numbers nat. Also it is suitable when we have a set with no structure, like
the axiomatically introduced real numbers (see Section 3.5.4). Another example is
the formalization of process algebras. In general one uses only atomic or induc-
tive types to define the datastructures when formalizing process algebra. For this
reason (Sellink 1996) was able to make use of an inductively defined equality. A
complication of an intensional equality like inductively defined equality or Leibniz
equality is that when we use the sets as types approach, elements of sets may have
structure because they are constructed from other building blocks. In many such
cases we need a specific extensional equality which identifies more elements than
Leibniz equality does. Leibniz equality is in a sense minimal, because it identifies
those elements which have exactly the same behavior. This will become problematic
in some cases, for example when we construct the set of functions as follows.

fun : SET→SET→SET

≡ λA, B:SET. A→B

=fun : ΠA, BpSet. (funAB)→(funAB)→PROP

≡ λA, BpSetλf, g:funAB Πx:A. (fx) =L (gx)

The intended equality is pointwise equality of function results. Then

A : Set let A be a set

f : funAA let f be a function over A

z : Πx:A. (fx) =L x assume f is the identity function over A

g : funAA define g as the identify function over A

≡ λx:A. x .

Now z is also a proof of the statement f =fun g, but f =L g is not provable without
extending the context with the axiom of extensionality:

Ext : ΠA, BpSETΠf, g:funAB. (f =fun g)→(f =L g) .

The formation of quotient sets is even more troublesome. For example, there is no
straightforward way to define the set of integers as the quotient of N × N by the
relation

(x1, x2) ∼ (y1, y2) ≡ x1 + y2 =L x2 + y1 .

Because the type theory we work in does not have quotient types, sets-as-types is
not suitable to formalize quotient sets.

3.1.3. Remark. Polymorphic equality can also be defined inductively.

Eqind : Πα:SET. α→α→PROP

≡ λα:SETλx:α µP :α→PROP. (Reflα,x : P x)

It is easy to show that Eqind is equivalent to Leibniz equality. Inductive equality has
a stronger elimination principle, which may be convenient in some rare occasions.
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3.1.2 Setoids

In order to solve the problem of a fixed equivalence relation, we could relativize all
quantifications of sets A by a binary relation R over A and by a proof that R is
an equivalence relation. So if we wish to express ‘for every set A, φ(A)’, we can
formalize this roughly as

ΠA:SETΠR:A→A→PROP. (equivalence R)→ ‘φR(A)’

where φR results from φ by replacing the equality by R. It will be much more
natural (with respect to Bishop’s definition of sets) to package the type A, the
relation R and a proof of equivalenceR into one single type. For this, we need
sigma types.

3.1.4. Definition. Define the type of setoids, notation Set, as a type T , together
with a binary relation R over T and a proof that R is an equivalence relation.

EqRel : SET→SET

≡ λT :SETΣR:T→T→PROP. equivalenceR

Set : TYPE

≡ ΣT :SET. EqRelT

Now we model a set A by T/R for some type T : SET and equivalence relation R

over T . The equivalence classes of T/R represent the elements of A. This approach
is called sets as setoids.

3.1.5. Definition. To extract the various components of a formal set, we define

el : Set→SET ‘the elements of A’
≡ λA:Set. π3

1(A)

= : ΠApSet. (elA)→(elA)→PROP

≡ λApSet. π3
2(A)

=refl : reflexive (=pA) ‘the proof that A is reflexive’
≡ λApSet. out 3

1π
3
3(A)

=sym : symmetric (=pA) ‘the proof that A is symmetric’
≡ λApSet. out 3

2π
3
3(A)

=trans : transitive (=pA) ‘the proof that A is transitive’
≡ λApSet. out 3

3π
3
3(A)

The term πni for 1 ≤ i ≤ n ∈ N is introduced as pseudo LEGO in Appendix A.1.2.

Some examples:
A : Set ‘let A be a set’

x : elA ‘let x be an element of A’

For the sake of readability we sometimes write ‘∀x:T ’ instead of ‘Πx:T ’. Again,
argument synthesis appears to be quite convenient for the definition = of equality of
a setoid. We do not need to explicitly specify the set to which the equality belongs.

When we construct a setoid, we generally do this in two stages. First we con-
struct a type T : SET. Next we define a relation over T , show that it is an equivalence
relation, and combine them into a setoid Set.
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3.1.6. Definition. Define the empty set, a singleton set and the set of natural
numbers.

(i) First on the level of types.

EmptySET : SET

≡ µX :SET. ()

UnitSET : SET

≡ µX :SET. (star : X)

(ii) By adding Leibniz equality3, we obtain setoids.

EmptySet : Set

≡ <EmptySET, =LpEmptySET, x. . .y>
UnitSet : Set

≡ <UnitSET, =LpUnitSET, x. . .y>
N : Set

≡ <nat, =Lpnat, x. . .y>

We define for any natural number n

n : elN
≡ (SN )n(zero)

where (SN )n(zero) stands for n applications of zero with SN .

3.1.7. Definition. Because we have PROP : SET we can also define the set of propo-
sitions as is done in Lindenbaum algebra’s. Define Ω as the propositions modulo
the if-and-only-if equivalence relation.

Ω : Set

≡ <PROP, iff, x. . .y>

By definition we have that elΩ =βι PROP and for propositions P, Q : elΩ

(P = Q) ⇐⇒ (P ⇐⇒ Q) .

Remark that for propositions P, Q : PROP, the term P = Q is not typable. Namely,
the argument mechanism of the type checker needs to find a setoid to which P and
Q belong in order to find the underlying equality relation between P and Q.

3.1.3 Partial equivalence relations

A third approach to model sets in type theory is to use partial equivalence relations.
A relation is a partial equivalence relation (or a PER) if it is a symmetric and
transitive relation.

Let R be a PER over the type T : SET. The domain of R is defined as precisely
those x : T for which R xx holds. Then we have that R is an equivalence relation
on its domain.

3Instead of Leibniz equality we could use the inductively defined equality which is provably

equivalent to Leibniz equality.
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3.1.8. Definition. (i) Define the type PER of partial equivalence relations over a
type T : SET. Define PER-sets as a type T together with a PER over T .

PER : SET→SET

≡ λT :SETΣR:T→T→PROP. (symmetricR) & (transitiveR)

Setp : TYPE

≡ ΣT :SET. PERT

(ii) Define terms to extract the various properties of a PER-set.

elp : Setp→SET

≡ λA:Setp. π3
1(A)

=p : ΠApSetp. (elp A)→(elp A)→PROP

≡ λApSetp. π3
2(A)

(iii) Define the domain of a PER-set.

domp : ΠA:Setp. (elp A)→PROP

≡ λA:Setp λx:elp A. x =p x

This way we have formalized the notion ‘element of’ by a term. So for a set A : Setp,
we can express statements like ‘x is an element of A or it is not’.

∀x : elp A.(dom pA x) ∨ ¬(dom pA x)

3.1.4 Product Sets and Vectors

One very basic mathematical notion we want to formalize is product sets. This can
be done conveniently by either sigma types or an inductive definition. We choose to
use sigma types because in the type checker we use, they provide a nicer denotation
for pairing and projection and they can be type checked more efficiently.

3.1.9. Definition. Define the binary product type prod, an equivalence relation
over prod, and the binary product set.

prod : SET→SET→SET

≡ λS, T :SET. S × T

Eqprod : ΠA, B:Set. (prod(elA)(elB))→(prod(elA)(elB))→PROP

≡ λA, B:Setλp, q:prod(elA)(elB). (p.1 = q.1) & (p.2 = q.2)

Prod : Set→Set→Set

≡ λA, B:Set. <prod(elA)(elB), Eqprod AB, x. . .y>

In the sequel, we will need to work with n-tuples for arbitrary natural numbers
n. Therefore we need to define the type of n-tuples. Let A1, . . . , An and A be sets.
We distinguish two cases, namely many-sorted A1 × · · · ×An and single-sorted An

(also known as heterogeneous and homogeneous). The former case we call n-ary
products, the latter vectors.

For the many-sorted case we need to define the type of sorts. This is done by a
(finite) list of SETs, which we call SETS. Because SET lives in TYPE we need a list
constructor of type TYPE→TYPE, which itself lives in BIGTYPE. We could avoid the
use of BIGTYPE by defining SETS directly as an inductive type, but we prefer the
current approach because it is more general.



26 CHAPTER 3. REPRESENTING MATHEMATICAL NOTIONS

3.1.10. Definition.

LIST : TYPE→TYPE

≡ λT :TYPEµX :TYPE. (NIL T : X, CONS T : T→X→X)

SETS : TYPE

≡ LIST SET

For any type A : SET and Bs : SETS, we will make use of the following abbreviations:

NILSET ≡ ∅
CONSSETABs ≡ ÂBs

Now that we have the type of sorts, there are two equivalent ways to define n-ary
products. Firstly, we can transform the list of sorts to an iterated application of the
binary product. This is a definition by recursion on (the length of) the list SETS.
Secondly, we can define n-ary products by an inductive type.

3.1.11. Definition. Define n-ary product in two ways. Firstly by iteration and
secondly by an inductive type.

product : SETS→SET

≡ εLIST SET ∅ =⇒ UnitSET

(T̂Ts) =⇒ prodT (productTs)

productind : SETS→SET

≡ µX :SETS→SET. (
pnil : X ∅,
pcons : ΠSpSETΠlpSETS. S→(X l)→X (Ŝl)

)

An intuitive argument that product and productind are equivalent is to look at
the shape of their canonical inhabitants:

<s1, . . . , sn, star> : S1 × . . .× Sn × UnitSET

=ι product (S1̂· · ·̂Sn̂∅)
pcons s1(. . . (pcons sn pnil))) : productind (S1̂· · ·̂Sn̂∅)

Although the latter definition (productind) seems to be a bit more elegant, we
choose to use the former one (product ). This is because proofs and definitions in
which n-ary products occur are mostly done by induction on the set of sorts used.

Of course, vectors are just a special instance of n-ary products.

3.1.12. Definition. (i) Define a term which maps An to Â· · ·̂A for any A : SET,
n : nat.

ssorted : SET→nat→SETS

≡ λT :SET. εnat zero =⇒ ∅
(SN n) =⇒ T̂(ssortedT n)

(ii) Define the type of vectors in two ways. Firstly indirectly by using n-ary
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products and secondly by recursion on n.

vectorprod : SET→nat→SET

≡ λT :SETλn:nat. product (ssortedT n)

vector : SET→nat→SET

≡ λT :SET. ε2
nat zero =⇒ UnitSET

(SN zero) =⇒ T

(SN (SN n)) =⇒ prodT (vectorT (SN n))

Although the definition of vectors by means of n-ary products is a bit more abstract,
we choose to use the second definition. The only reason is that it is a more low-
level definition which involves half the number of ι reductions compared to the first
definition. Also it has the very convenient property that vectorT 1 =βι T . In case
we need to consider vectors as products, apply the next trivial lemma.

3.1.13. Lemma. ∀T :SET∀n:nat. (vectorT n)→(product (ssortedT n)).

Proof. For a proof, see the LEGO library.

3.1.14. Definition. To complete the definitions for n-tuples, we extend them from
types to setoids.

Sets : TYPE

≡ LIST Set

Product : Sets→Set

≡ εLIST Set (NIL Set) =⇒ UnitSet

(CONS SetAAs) =⇒ ProdA (ProductAs)

Equality on n-ary products is defined using iterated conjunction of the equalities of
the sorts.

3.1.15. Definition. (i) Define a term which maps An to Â· · ·̂A for any setoid
A : Set and natural number n : nat.

SSorted : Set→nat→Sets

≡ λA:Set. εnat zero =⇒ NIL Set

(SN n) =⇒ CONS ?A (SSortedAn)

(ii) Define the type of vectors by recursion on n.

Vectorind : Set→nat→Set

≡ λA:Set. εnat zero =⇒ UnitSet

(SN n) =⇒ ProdA (Vectorind An)

(iii) Define the vector set.

Eqvector : ΠA:SetΠn:nat. (vector (elA) n)→(vector (elA)n)→PROP

≡ λA:Set. ε2
nat zero =⇒ =pUnitSet

(SN zero) =⇒ =pA
(SN (SN n)) =⇒

λv, w:vector (elA) (SN (SN n)).
(v.1 = w.1) & (Eqvector ? ? v.2 w.2)

Vector : Set→nat→Set

≡ λA:Setλn:nat. <vector (elA)n, Eqvector An, x. . .y>
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Although the definition Vectorind is much more straightforward then Vector , we
still choose the latter one. Again this is just because of efficiency of reduction.
Vector gives us quick access to its components without going into recursion. So
for each n, el (VectorAn) converts in a single step to vector (elA) n, where
el (Vectorind An) needs order n steps.

3.1.5 Disjoint union

Disjoint sums and products are just dual structures, so all our definitions for prod-
ucts can trivially be converted to sums.

3.1.16. Definition. (i) Define the (binary) disjoint sum type inductively.

sum : SET→SET→SET

≡ λS, T :SETµX :SET. (inL S,T : S→X, inR S,T : T→X)

(ii) Define the setoid Sum by adding an appropriate equivalence relation to sum.

Eqsum : ΠA, B:Set. (sumA.el B.el )→(sumA.el B.el )→PROP

≡ λA, B:Set. ε2
sumA.elB.el

(inLA.elB.elx1), (inLA.elB.elx2) =⇒ x1 = x2

(inLA.elB.elx1), (inRA.elB.el y2) =⇒ false

(inRA.elB.el y1), (inLA.elB.elx2) =⇒ false

(inRA.elB.el y1), (inRA.elB.el y2) =⇒ y1 = y2

Sum : Set→Set→Set

≡ λA, B:Set. <sumA.el B.el , Eqsum AB, x. . .y>

3.1.17. Definition. Define the n-ary disjoint type and set by recursion on n.

sums : SETS→SET

≡ εLIST SET ∅ =⇒ EmptySET

(ŜSs) =⇒ sumS (sumsSs)
Sums : Sets→Set

≡ εLIST Set (NILSet) =⇒ EmptySet

(CONSSetAAs) =⇒ SumS (SumsSs)

3.1.18. Definition. In Definition 3.4.6 we need a set of exactly two elements.

(i) Using the disjoint union it becomes straightforward to define a canonical set
of precisely two elements.

TwoSetsum : Set

≡ Sum UnitSetUnitSet

(ii) We can also define a canonical set of two elements by an inductive definition.

TwoSET : SET

≡ µX :SET. (unit21, unit
2
2 : X)
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(iii) Extend the definition to a setoid.

EqTwoSET : TwoSET→TwoSET→PROP

≡ ε2
TwoSET unit21, unit

2
1 =⇒ true

unit21, unit
2
2 =⇒ false

unit22, unit
2
1 =⇒ false

unit22, unit
2
2 =⇒ true

TwoSet : Set

≡ <TwoSET, EqTwoSET, x. . .y>
The same scheme can be used to define sets of three or more elements. In those
cases it is more convenient to define them as inductive types with three, four or
more constructors as opposed to defining them by iteration of Sum UnitSet. This
is because the elimination principle εn of the set of n elements gives us immediately
all n sub cases, whereas εsum gives us only two sub cases.

3.2 Functions

The next notion we define is functions on sets. We model these as type theoretic
functions that respect the equality relation. However, this way some particular
functions cannot be defined in our calculus. Therefore we present a second definition
based on functions as graphs, and a third approach using case distinction.

3.2.1 Function space

Let the sets A and B be given. To construct a function from A to B, we construct
a λ-term f of type (elA)→ (elB). Also we have to supply a proof that this term
f preserves the equality from A to B.

3.2.1. Definition. (i) Define the type of unary functions.

extensional : ΠA, BpSet. ((elA)→(elB))→PROP

≡ λA, BpSetλg:(elA)→(elB)
∀x, y:elA. (x = y)→(gx) = (gy)

Fun : Set→Set→SET

≡ λA, B:SetΣf :(elA)→(elB). extensionalf

(ii) Let A, BpSet be setoids and f :FunAB a function from A to B. Define a term
ap which extracts the type theoretic function from f . Also define a term exten

which gives a proof that f preserves the equality of A to B.

ap : (elA)→(elB)
≡ π2

1(f)

exten : extensional(ap f)
≡ π2

2(f)

(iii) Extend the type of unary functions to a setoid.

eqFun : (FunAB)→(FunAB)→PROP

≡ λf, g:FunAB ∀x:elA. (ap f x) = (ap g x)

Function : Set→Set→Set

≡ λA, B:Set. <FunAB, eq Fun pApB, x. . .y>
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The term ap is used for function application. So f(x) is formalized as ap fx. This
may be written as f.apx. Furthermore we extend pseudo-LEGO with the following
abbreviation. Let A, B be sets.

A⇒B ≡ FunAB

Besides unary functions, we also need binary functions a lot. It is trivial to
extend the definitions above to the binary case.

3.2.2. Definition. We will only present the definition of binary functions. The
definitions of ap2 and exten2 are merely the first and second projections.

Fun2 : Set→Set→Set→SET

≡ λA, B, C:SetΣf :(elA)→(elB)→(elC). extensional2 f

For arbitrary structures we even need functions of arbitrary arity. We will define
these in Section 3.4.2. We could have used arbitrary arity functions to instantiate
them to the unary or binary case. Because functions are a rather basic notion
which is used a lot in a proof checker, and because this instantiation would make
type checking considerably slower, we choose to treat the unary and binary case
separately.

3.2.2 Choice axioms

Some mathematicians have been reserved to make use of (variants of) the axiom of
choice. Because of the contructive nature of the propositions-as-types paradigma,
the choice principles are not derivable in our system.

3.2.3. Definition (Axiom of Choice). Let A and B be sets, and S a subset of
A × B. If for each a ∈ A there exists an element b ∈ B such that (a, b) ∈ S, then
there is a function f ∈ A⇒B such that for each a in A we have (a, f(a)) ∈ S.

In constructive mathematics, existence is much more restrictive then the existence
in classical mathematics. As (Bishop 1967, chapter 1, paragraph 3) writes “the only
way to show that an object exists is to give a finite routine for finding it”.

So suppose that, in order to get a choice function, we have proven for any a the
existence of b such that R(a, b) holds. Then we had to provide a finite routine i for
which R(a, i(a)) holds for every a. This routine need not preserve equality, so in
general we do not get a choice function. Furthermore, this routine i only exists on
the meta theoretical level. So if we need the axiom of choice, we have to introduce
it axiomatically.

There are many weaker forms for the axiom of choice. One of them, which
we call the axiom of unique choice, is particularly useful if we need to construct a
function object from its graph. As opposed to the axiom of choice, the underlying
finite routine of the proof of ∃!x.φ(x) does preserve equality. So in constructive
mathematics, the axiom of unique choice seems to be an acceptable principle to
use.

3.2.4. Definition (Axiom of Unique Choice). Let A and B be sets. Every subset
S ⊂ A×B for which

– for each a ∈ A there exists an element b ∈ B such that (a, b) ∈ S
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– if (a, b1) and (a, b2) are elements of S, then b1 = b2

determines a function f ∈ A⇒B such that for each a in A we have (a, f(a)) ∈ S.

When we formalize these axioms, in particular the existence property of a function
f , we have to decide whether we take the strong or weak existential quantifier.

The next definition makes use of the notion of a binary relation over sets. Given
A, B : Set, inhabitants of RelAB are equality preserving binary relations over the
elements of A×B. See Section 3.2.4 for the formal definition of Rel.

3.2.5. Definition. (i) Define the axiom of choice over sets, binary relations and
functions, and over types and operators.

AC : PROP

≡ ΠA, BpSet∀R:RelAB. (∀x:elA∃y:elB. R.apx y)→
∃f :A⇒B ∀x:elA. R.apx (f.ap x)

ac : PROP

≡ ΠT, U pSET∀R:T→U→PROP. (∀x:T ∃y:U.Rx y)→
∃f :T→U ∀x:T. R x (f x)

(ii) Define the axiom of unique choice over sets and functions using weak and
strong existential quantification.

AUC∃ : PROP

≡ ΠA, BpSet∀R:RelAB. (∀x:elA∃!y:elB. R.apx y)→
∃f :A⇒B ∀x:elA. R.apx (f.ap x)

AUCΣ : TYPE

≡ ΠA, BpSet∀R:RelAB. (∀x:elA∃!y:elB. R.apx y)→
Σf :A⇒B ∀x:elA. R.apx (f.apx)

The axiom of unique choice states that if we have a function as a graph, there exists
a function in the type theoretic sense. The strong variant actually gives us this
function as an object.

It is easy to prove that from AC follows ac and that from ac follows AUC∃. Also
AUCΣ→AUC∃ is provable, but the reverse implication is not. The following lemma
shows that in our system the axiom of choice over sets implies classical logic.

3.2.6. Lemma. The axiom of choice implies excluded middle.

AC → ∀P :PROP. P ∨ ¬P

Proof. We present an informal sketch of the proof. Suppose we have AC. Let
P : PROP be a proposition. First we define two predicates φ and ψ over Ω:

φ(α) ≡ α ∨ P

ψ(α) ≡ ¬α ∨ P .

Next we construct a two-element set A and a relation R over A× Ω as follows.

A ≡ {φ, ψ}
R(χ, α) ≡ χ(α)
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We show that R is a graph. That is, we prove

∀χ:elA∃α:PROP. R(χ, α)

by case distinction on χ and substituting true respectively false for α. Then we
apply AC to obtain a predicate f over A for which

∀χ:elA. χ(f(χ)) .

In particular, φ(f(φ)) and ψ(f(ψ)) hold. We apply case distinction on f(φ) ∨ P

and ¬f(ψ) ∨ P . For the case that f(φ) and ¬f(ψ) hold, we assume P is true. But
then we have that ψ = φ and hence f(ψ) = f(φ) which is leads to a contradiction.
So we give up the assumption and conclude ¬P . For the other three cases, we have
P immediately.

The proof is based on the fact that the propositions form a set and that we have
the comprehension axiom (see Section 3.3.3). This enables us to define the setoid
A as follows.

=P : (PROP→PROP)→(PROP→PROP)→PROP

≡ λφ, ψ:(elΩ)→(elΩ)∀α:PROP. (φα) = (ψα)

A : Set

≡ <Σχ:PROP→PROP. χ =P φ ∨ χ =P ψ, x. . .y, x. . .y>

For details, see the LEGO library.

3.2.7. Lemma. AUCΣ is conservative over AUC∃

Proof (sketch). Suppose we have proved a statement T by a proof z : T which
makes use of an application of ACΣ. So say for a relation R and a proof h we used
in the proof z the term

ACΣ R h : Σf :A⇒B ∀a:elA. R(a, f(s)) .

Then we can prove ∀f :A⇒B. [(∀a:elA. R(a, f(s))) → T ] without using (ACΣ R h)
anymore. By an application of AC∃ we can get a new proof of T without the strong
axiom of choice.

The strong versions of the choice axioms as we formulated them have the re-
markable properties that they make weak existential quantification strong.

3.2.8. Lemma. Suppose ApSet, φ:PredA.
(i) ACΣ→ (∃x:elA. φ(x))→ (Σx:elA. φ(x))
(ii) AUCΣ→ (∃!x:elA. φ(x))→ (Σx:elA. φ(x) & unique(φ, x))

Proof. For a proof, see the LEGO library.

So as soon as we assume ACΣ or AUCΣ, the projection for the existential quantifiers
∃ respectively ∃! become provable inside the system.

None the proofs presented in the case studies of the next chapter employed
any choice principle at all. During the development of formalized mathematics,
we encountered only two occasions where we felt the need for a choice principle.
Firstly for a proof that the defined equality over categorical subsets is equivalent
to the equality on predicates (see Section 3.3.1). Secondly, for the construction
of an inverse function from a surjective injection. It is not hard to see that both
statements are equivalent to the axiom of unique choice.
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3.2.3 Graphs

Set theory uses graphs to represent functions. A graph is binary relation that is
total and unique.

3.2.9. Definition. (i) Define what it means for a relation to be total or functional.

total : ΠA, BpSet (RelAB)→PROP

≡ λA, BpSetλR:RelAB ∀x:elA∃y:elB. R(x, y)

functional : ΠA, BpSet (RelAB)→PROP

≡ λA, BpSetλR:RelAB

∀x:elA∀y, y′:elB. R(x, y)→R(x, y′)→y = y′

(ii) Define functions in a set-theoretic way as total functional binary relations.

FunGr : Set→Set→SET

≡ λA, B:Set. ΣR:RelAB. (totalR) & (functionalR)

Functions as graphs as have the advantage that the axiom of unique choice as
formulated in the previous section becomes a tautology. So it will be no problem
to define a function by cases on a decidable predicate.

3.2.10. Lemma. Let A, B : Set be a setoids, let φ : (elA) → Prop be a decidable
predicate. Let a, b : elB be elements of B. Then there exists a function F :
FunGr AB such that

F (x) = a if φ(x)
b else

Proof. Define f as

f = λx, y:elA. (a = y & (φx)) ∨ (b = y & ¬(φx))

Then it is trivial to show that f is a total functional relation for which the desired
property holds.

From a set-theoretic standpoint of view graphs are nice, for type theory these
are highly inconvenient to use. Lambda calculus invites us to represent functions as
by λ-terms. For example, to formalize ‘∀x.f(g(x)) = 2’ as graphs we have to write
something like

∀x∃y.Rf (y, 2) & Rg(x, y)

3.2.4 Predicates and relations

In this subsection we will define the notion of predicates. We will formalize them
as functions into the set of propositions Ω. Let us first present a definition of n-ary
relations following (Mines et al. 1988, chapter 1, paragraph 2).

An n-ary relation on a set S is a property P that is applicable to n-
tuples of elements of S, and is extensional in the sense that if xi = yi,
for i = 1, . . . , n, then P (x1, . . . , xn) if and only if P (y1, . . . , yn).
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The naive way to formalize predicates is by tuples of a type theoretic function
f into PROP, together with a proof that f preserves equality. But since we have
functions over sets and the setoid of propositions Ω, it is easy to define predicates
and relations as functions into Ω. This has the advantage that all constructions and
lemmas which are valid for functions also can be instantiated by predicates. In the
following definitions we only present the case for predicates, while relations are a
trivial extension.

3.2.11. Definition. (i) Define predicates as functions into the set of propositions.

Pred : Set→SET

≡ λA:Set. FunAΩ

(ii) Let A : Set be a setoid. Transform the type PredA : SET into a setoid.

Predicate : Set→Set

≡ λA:Set. FunctionAΩ

Because Pred is defined in terms of functions, extensionality holds automatically
for predicates also. This means that given a predicate φ : PredA for some setoid
A, we have that for x, y : elA,

(x = y) → (φ(x) ⇐⇒ φ(y)) .

This is ensured because the underlying equality of the set of propositions Ω is the if-
and-only-if relation. For the definition of Predicate, pointwise equality of functions
is used to compare subsets. This implies that for any two predicates φ and ψ of
type PredicateA we have

φ = ψ ≡ ∀x:elA. φ(x) ⇐⇒ ψ(x) .

3.2.12. Definition. (i) A predicate over a set A is decidable if for every element
of A we know that x is in the predicate or not. We distinguish predicates on the
level of type theoretic maps into PROP and on the level of functions into Ω.

decidable pred : ΠT pSET. (T→PROP)→ PROP

≡ λT pSETλP :T→PROP∀x:T. (P x) ∨ ¬(P x)

decidable rel : ΠT pSET. (T→T→PROP)→ PROP

≡ λT pSETλR:T→T→PROP∀x, y:T. (Rxy) ∨ ¬(R xy)

(ii) Define decidability of predicates Pred and relations Rel .

DecidablePred : ΠApSet. (PredA)→ PROP

≡ λApSetλP :PredA decidable pred (apP )

DecidableRel : ΠApSet. (RelAA)→ PROP

≡ λApSetλR:RelAA decidable rel (ap2R)

(iii) We also can define what it is for a setoid to be discrete. A setoid is discrete
if the underlying equality relation is decidable. Let A : Set be a setoid.

Discrete : PROP

≡ decidable rel (= pA)
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3.3 Subsets

In this section we elaborate on subsets. Now that we have predicates, it seems
natural to define subsets as predicates. We will look briefly to another approach,
namely categorical subsets. Next we will show how to construct the power set, and
show how we can transform subsets into sets. For decidable predicates, we will
define a way to obtain the characteristic function by way of case distinction.

3.3.1 Subsets as predicates

Bishop defines subsets with use of an injection map. We quote (Bishop 1967, chapter
3, definition 1):

A subset (A, i) of a set B consists of a set A and a function i : A→ B,
called the inclusion map, such that

a1 = a2 if and only if i(a1) = i(a2)

for all a1 and a2 in A.

This function i injects every element of A into the set B. So actually, A is a subset
of B if A’s cardinality is smaller then the cardinality of B.

However, in type theory it seems to be more natural to formalize subsets as
predicates. So given a set A, a subset B is formed by indicating which elements
of A belong to B. The set-inclusion relation then is valid only for subsets over a
common set.

3.3.1. Definition. (i) Define subsets as predicates and the power set by forming
subsets into setoids.

Subset : Set→SET

≡ Pred

(ii) For readability, we define the ‘is an element’ relation for subsets. Let A : Set
be a setoid.

elem : (elA)→(SubsetA)→PROP

≡ λx:elAλP :SubsetA. apP x

3.3.2. Definition. A subset S of a set A is detachable if every element of A belongs
to S or not.

detachable : (SubsetA)→ PROP

≡ DecidablePred pA

In a classical setting, all subsets are detachable.

3.3.2 Power sets

Power set formation is considered as a very powerful operation. The way we have
formalized predicates gives us the power sets immediately.

3.3.3. Definition.

Powerset : Set→Set

≡ λA:Set. PredicateA
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The crucial point is that in Definition 3.1.7, we allowed ourselves to form the set of
propositions Ω by quotienting them by the if-and-only-if relation.

3.3.4. Definition. Let A, BpSet be a setoids. We define operators over subsets
and the notions of image and pre-image of a subset.

(i) Let S, T : el (PowersetA) be subsets of A. Define the empty subset, subset
complement, union and intersection.

void : el (PowersetA)
≡ <λx:elA. false, x. . .y>

compl : el (PowersetA)
≡ <λx:elA.¬(elemxS), x. . .y>

union : el (PowersetA)
≡ <λx:elA. (elemxS) ∨ (elemxT ), x. . .y>

inter : el (PowersetA)
≡ <λx:elA. (elemxS) & (elemxT ), x. . .y>

(ii) Let f : FunAB be a function. Define the pre-image and image of f .

PreImage : (el (PowersetB))→ (el (PowersetA))
≡ λC:el (PowersetB). <λa:elA. elem f(a)C, x. . .y>

Image : (el (PowersetA))→ (el (PowersetB))
≡ λC:el (PowersetA).

<λb:elB ∃a:elA. (elem a C) & (f(a) = b), x. . .y>

3.3.5. Lemma. Given S, T : el (PowersetA) be subsets of a setoid A : Set. We
have the following De Morgan laws.

(i)

(inter (complS) (complT )) = compl (unionS T )

(ii) If detachableS and detachableT hold, then

(union (complS) (complT )) = compl (interS T ) .

Proof. See the LEGO library.

3.3.3 Subsets into sets

The comprehension axiom plays an important role in set theory. The axiom states
that

for any property φ and set A we can form the set {x ∈ A|φ(a)} of all
elements of A which satisfy property φ .

Let A be a set and S be a subset over A. We use sigma-types to define the type of
all elements of A that are member of S. This type is formed into a set by adding
the equality relation of A.

toSET : ΠT pSET. (T→PROP)→SET

≡ λT pSETλφ:T→PROP. Σx:T. φ x

toSet : ΠApSet. (SubsetA)→Set

≡ λApSetλS:SubsetA. <T, λx, y:T. x1 = y1, x. . .y>
where T : SET ≡ toSET (apS)
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The comprehension axiom has the danger that it may lead to a paradox. Namely,
define z ≡ {y|y 6∈ y}, then we have z ∈ z ⇐⇒ z 6∈ z which is a contradiction.
However, the Russell paradox will not arise because we demand that elements of z

belong to a set of which z itself can not be a member. Also elem z z is not typable.

3.3.4 Case distinction

Unless we have functions as graphs, it is not possible to define a function by cases
in pure type systems like λC. The reason for this is that we defined the logical
or-connective by an impredicative definition. The or-elimination principle allows us
only to eliminate into propositions. In general however, a function has a type as
codomain. Of course, we could assume the strong variant of the axiom of unique
choice to define a function by cases. But this extension of the context is not wanted
nor necessary in most cases.

The inductively defined or-connective has a stronger elimination principle, namely
elimination into types. Then we are able to define a function by case distinction.
If we need case distinction we could substitute the impredicative definition of the
or-connective by the inductive definition. This would mean redoing all our proofs
and rebuilding all our libraries. But fortunately, there is a more elegant solution. As
we will see, just the definition of the inductively defined or makes the impredicative
defined or strong.

3.3.6. Definition. Recall the definition of the logical or-connective both impred-
icative and inductively from Section 2.1.

∨ : PROP→PROP→PROP

≡ λP, Q:PROPΠX pPROP. (P→X)→(Q→X)→X

inl : ΠP, QpPROP. A→(A ∨ B)
≡ x. . .y

inr : ΠP, QpPROP. B→(A ∨ B)
≡ x. . .y

Or : PROP→PROP→PROP

≡ λP, Q:PROPµX :PROP. (InlP,Q : P→X, InrP,Q : Q→X)

Then we have

εOr f g (InlP,Q p) =ι f p

εOr f g (InrP,Q q) =ι g q

where P, Q : PROP, p : P , q : Q, φ : (OrP Q)→SET, f : ∀p:P. φ (InlP,Q p), and
g : ∀q:Q. φ (InrP,Q q).

Using Or we can define a term select for case distinction based on P ∨ Q:

3.3.7. Definition. Let P, Q : PROP be propositions.

select : (P ∨ Q)→ ΠT pSET. T→T→T

≡ λz:P ∨ Q λT :SETλa, b:T.

εOr (λp:P. a) (λq:Q. b) (z InlP,Q InrP,Q)

3.3.8. Lemma. Let P, Q : PROP be propositions. Let T : SET be a type and a, b :
T .
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(i) The or-connectives are equivalent.

(P ∨ Q)↔ (OrP Q)

(ii) Suppose p : P , and q : Q. Then

select (inlP,Q p) a b =βι a

select (inrP,Q q) a b =βι b .

(iii) If z : P ∨ Q, then

select z a b =βι a if for some h:P we have z =βι inlP,Q h

select z a b =βι b if for some h:Q we have z =βι inrP,Q h .

(iv) If z : P ∨ (¬P ), then

P → (select z a b) =L a

¬P → (select z a b) =L b .

Proof. The proof of (i) is trivial (see the LEGO library for details). To see that
(ii) holds we have to realize that

inlP,Q p InlP,Q InrP,Q =β InlP,Q p

inrP,Q q InlP,Q InrP,Q =β InrP,Q q .

Lemma (iii) follows directly from (ii). We only present a proof of the first part
of (iv). Assume that P holds. Expand the definition of select and apply the
Or-elimination principle on

z InlP,¬P InlP,¬P : Or P (¬P ) .

Then we are left to prove P→(a =L a) and (¬P )→(b =L a), which are both obvious
because P holds.

If the proof z in Lemma 3.3.8 (iv) is constructive, z will generally have a shape as
stated in (iii). As a consequence we then get the stronger result that

P → (select z a b) =βι a

¬P → (select z a b) =βι b .

Case distinction via select is not always convenient. Sometimes we want to
test whether two elements in a discrete set are equal or not.

3.3.9. Definition. Let ApSet be a discrete setoid such that Adiscr is a prove for
DiscreteA. Let x, y : elA be elements of A. Define

if : ΠT pSET. T→T→T

≡ select (Adiscr x y) .

Now we can write ‘ifAdiscr x y a b’ which means ‘if x = y then a otherwise b’.
The following extension of pseudo LEGO allows us to write case distinction for

decidable predicates in a more readable way. Let φ : T→PROP be a decidable predi-
cate over a type T : SET and h1, h2 be of type T → T . Let φdec : decidable predφ

be a proof of the decidability of φ. Then

f ≡ select (φdecx)(h1 x)(h2 x)
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may be written as
f ≡ λx:T. h1 x if φx

h2 x otherwise

in pseudo LEGO.

3.3.10. Definition. Using case distinction it is easy to get the characteristic func-
tion of a decidable predicate.

(i) Let T pSET be a type, φpT→PROP and φdec : decidable predφ a proof that φ

is decidable. Define the map

char : T → nat

≡ λx:T. 0 if φx

1 otherwise

(ii) Because the map char preserves equality we can extend it to a function. Let
ApSet be a setoid, φpPredA and φdec : DecidablePredφ a proof that φ is decidable.
Define

Char : FunAN
≡ <charφdec, x. . .y>

3.3.11. Lemma. Let T : SET be a type, φ : T→PROP be a decidable predicate over
T .

∀x:T. (φx) ⇐⇒ (charφdec x) = 0

Proof. By Lemma 3.3.8 (iv) and some equational reasoning.

For an application of select and char , the reader is referred to Section 4.2.
There we define a prime generator using bounded minimalization.

3.4 Mathematical Structures

In this section we present a formalization of a general framework of syntactical
descriptions and their realizations. For two reasons it is important to formalize
mathematical structures as primitive notions. First, it makes it possible to define
notions like homomorphism and substructures for arbitrary structures in a general
way. So to obtain the type of homomorphisms over monoids, we just have to in-
stantiate homomorphisms with the structure of monoids. Of course, all results for
homomorphisms will immediately carry over to homomorphisms over monoids. Fur-
thermore, we wish to be able to reason about structures in general. This will allow
us to develop meta-theory inside our system. An example is equational reasoning
which we present using a two-level approach in Chapter 5.

We will consider single-sorted structures only. The reason for this is threefold.

1. All our case studies do not need many-sorted structures. We don’t work with
metric spaces for example.

2. Most structures like ‘function’, ‘terms’, or ‘homomorphism’ are quite easier
to define single-sorted. Also their application in formal proofs is simpler.

3. The construction of the single-sorted case as an instantiation of the many-
sorted case is quite involved. It would make type-checking considerably less
efficient.
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Mathematical structures are constructed in two stages. First we define the
syntactical notion of a signature. For the case of single-sorted algebras, the signature
determines a countable set of function and predicate symbols. Also, every symbol
is assigned an arity. Next the syntax is interpreted. This leads to the semantical
notion of a structure. The interpretation consists of a carrier set and a function
and predicate for each symbol of the signature.

We distinguish structures and models. Compared to structures, models satisfy
additional axioms. We define the notion of axioms over structures instead of over
signatures. This makes much more general formulations of axioms possible. A
drawback might be that axioms do not have structure anymore about which we can
reason. However, we feel that this is not out weighted by the advantage of freely
structured axioms.

Recapitulating, structures are introduced by
1. a signature defining the alphabet,
2. a carrier set for the domain of the structure,
3. two valuation maps which interpret every symbol of the signature to a func-

tion or predicate over the carrier set.
Based upon structures we construct the notion of models by adding

4. a proposition over the interpreted symbols of the signature to formulate the
axioms of a structure,

5. a proof of the axioms.

3.4.1 Syntax

Single-sorted signatures consist of two types representing the number of function and
predicate symbols, together with two maps which assign an arity to each symbol.
Constants are treated as functions with arity zero.

3.4.1. Definition. (i) We define the type of signatures inductively as follows.

Signature : TYPE

≡ µX :TYPE. (
Sigintro : ΠF :SET. (F→nat)→

ΠP :SET. (P→nat)→ X

)

(ii) Define projection functions to extract various properties of a signature.

symbolF : Signature→ SET

≡ εSignature (λF :SETλArF :F→natλP :SETλArP :P→nat. F )

symbolP : Signature→ SET

≡ εSignature (λF :SETλArF :F→natλP :SETλArP :P→nat. P )

arityF : ΠspSignature. (symbolF s)→ nat

≡ εSignature (λF :SETλArF :F→natλP :SETλArP :P→nat. ArF )

arityP : ΠspSignature. (symbolP s)→ nat

≡ εSignature (λF :SETλArF :F→natλP :SETλArP :P→nat. ArP )

3.4.2. Definition. Let s : Signature be a signature. Define terms and formu-
las.
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(i) First we define n-tuples of terms and terms.

terms : nat→ SET

≡ µX :nat→ SET. (
TFV : nat→ (X1),
TFC : Πf :symbolF s. (X(arityF f))→ (X1),
tnil : X0,
tcons : Πnpnat. (X1)→ (Xn)→ (X(SN n))

)

term : SET

≡ terms1

Here TFV stands for term formation variables and TFC stands for term formation
constants and functions. Variables are encoded by natural numbers.

(ii) Define (atomic) formulas inductively.

aformula : SET

≡ µX :SET. (
AFPred : Πp:symbolP s. (terms (arityP p))→ X

AFEq : (terms2)→ X

)

formula : SET

≡ µX :SET. (
FFAtom : aformula→ X

FFEx, FFAll, FFnot : X → X

FFimp, FFor, FFand : X → X → X

)

3.4.2 Semantics

We will define a structure over a signature s as a set A together with valuation
functions for the function and predicate symbols of s. Given some axioms ax over
s, we define a model as a structure satisfying the axioms ax.

3.4.3. Definition. (i) Define n-ary functions and predicates.

FunN : Set→ N→ SET

≡ x. . .y
PredN : Set→ N→ SET

≡ x. . .y

(ii) Define structures and models.

Structure : Signature→ TYPE

≡ λs:SignatureΣA:Set. (Πc:symbolF s. FunN A (arityF c))×
(Πp:symbolP s. PredN A (arityP p))

Axioms : Signature→ TYPE

≡ λs:Signature. (Structures)→ PROP

Model : ΠspSignature. (Axioms s)→ TYPE

≡ λs:Signatureλax :Axiomss Σstr :Structures. ax str

Remark that in the definition of Model the lambda term ax str is a proposition.
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The reader is referred to the LEGO library for the actual definition of FunN and
PredN . By definition we obtain the convenient properties that for any setoid A : Set

ap (FunN A 0) =βι elA

FunN A 1 =βι FunAA

FunN A 2 =βι Fun2 AAA

PredN A 1 =βι PredA

PredN A 2 =βι RelAA .

3.4.4. Definition. Define lambda terms to extract various properties of models
and structures. Let spSignature be a signature.

(i) Let the proposition ax p(Axiomss) formulate the axioms for a structure of the
signature s. Let M : (Modelax ) be a model satisfying the axioms.

structure : Structures

≡ π2
1(M)

axioms : ax structure

≡ π2
2(M)

(ii) Let ax p(Axioms s) be some axioms for a structure of the signature. Let M :
(Modelax ) be a model satisfying the axioms.

car : Set

≡ π3
1(structureM)

obj : SET

≡ el car

intF : Πc:symbolFs . FunN car (arityF c)
≡ π3

2(structureM)

intP : Πp:symbolP s. PredN car (arityP p)
≡ π3

3(structureM)

(iii) Define the type φ as

φ ≡ ΠApSet.
(Πc:symbolF s. FunN A (arityF c))→
(Πp:symbolP s. PredN A (arityP p))→ PROP .

For convenience, we define a lambda term to introduce the axioms of a structure as
follows.

Axioms intro : φ→ Axiomss

≡ λz:φλstr :Structures. z π3
2(str)π3

3(str)

We need an interpretation function which, given some assignment, maps each term
of the signature to an element of the carrier of a model.

3.4.5. Definition. Let spSignature be a signature, ax p(Axioms s) some axioms
for a structure of the signature. Let M : (Modelax ) be a model satisfying the
axioms.
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(i) An assignment is a valuation of the variables into the carrier of M . We
implement assignments by non-empty4 lists. See the LEGO library for a definition
of non-empty lists neList.

Assignment : Set

≡ neList M.car

(ii) Define the interpretation of a term with respect to an assignment. First we
deal with the case of n-tuples of terms. Let ρ : el Assignment be an assignment.

intnρ : Πnpnat. (terms s n)→ (productM.obj n)
≡ εterms s (TFVn) =⇒ <ρ(n), star>

(TFC f t) =⇒ <(intFf)(intnρ t), star>
tnil =⇒ star

tcons t l =⇒ <π2
1(intnρ t), intnρ l>

intρ : (term s)→ (objM)
≡ λt:term s. π2

1(intnρ t)

Monoids

Defining a structure like the monoids falls into two parts. First, we define the
signature. Second, we define axioms over the signature which should be satisfied to
form a monoid.

3.4.6. Definition. We define the signature for monoids as two function symbols
and no predicate symbols. One function symbol is used for a constant, another
symbol for a binary function.

FnSymMN : SET

≡ µX :SET. (identMN, opMN : X)

sigMN : Signature

≡ Sigintro (εFnSymMN identMN =⇒ 0
opMN =⇒ 2 )

(εEmptySET)

3.4.7. Definition. (i) We need to define the notion of associativity and identity.
Let ApSET be a setoid, f : (Fun2 AAA) a binary function over A and e : elA an
element of A.

Associative : PROP

≡ Πx, y, z:elA. f(x, f(y, z)) = f(f(x, y), z)

Identity : PROP

≡ (Πx:elA. f(e, x) = x) & (Πx:elA. f(x, e) = x)

4An assignment over M is implemented by a non-empty list because we always need at least

one element of the carrier of M . This element enables us to valuate variables outside the set of

free variables of a term.
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(ii) Now we are able to specify the axioms for a monoid.

axioms MN : Axioms sigMN

≡ Axioms intro(λA:Set
λF :(Πf :symbolF sigMN. FunN A (arityF f))
λP :(Πp:symbolP sigMN. PredN A (arityP p)).
(Associative (F opMN))

&
(Identity (F opMN)(F identMN)))

Although the definition of the axioms of monoid may look complex, the type checker
will help us to build it. So for example using the Intros tactic, it will generate for
us the types of the variables F and P automatically.

3.4.8. Definition. (i) Now we have specified the signature for a monoid structure
and the axioms which should hold, the definition of a monoid is a simple task.

Monoid : TYPE

≡ Model axioms MN

(ii) Also we are able to retrieve the multiplication and unit element of a monoid.
Let M : Monoid be a monoid.

1MN : objM

≡ ap (intF M identMN)

×MN : Fun2 M.car M.car M.car

≡ intF M opMN

assocMN : Associative×MN

≡ fst M.axioms

identMN : Identity ×MN 1MN
≡ snd M.axioms

In our library we developed theory for monoids, groups, rings, up to fields. We
introduced ordered field as follows.

3.4.9. Definition (Ordered field). Let A be a set, 0 and 1 be two elements of
A, inv and recip be unary functions over A (for additive inverse and recip-
rocal), + and × be binary functions over A, and pos be a predicate over A.
F = <A, 0, inv, +, 1, recip,×, 1, pos> is an ordered field if it satisfies the field
axioms, and moreover for every x, y in A:

pos(inv(x)) ∨ pos(x)
pos(x)→ pos(inv(x))→ x = 0
pos(x)→ pos(y)→ pos(x + y)
pos(x)→ pos(y)→ pos(x × y)

Also we defined the notion of homomorphisms and subgroups over structures and
showed some basic properties concerning them. The reader is referred to the LEGO
library (Appendix A.3) for more details.
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3.5 Towards Analysis

In this section we formalize a few number systems up to the field of complex num-
bers. We start with the natural numbers. They are defined by a construction. Next
we build the integers from the naturals. Then using the integers, we construct the
rationals. The real number system is formalized by an axiomatization. And finally
the complex numbers are constructed out of the reals. Schematically:

nat

��

R

�� !!
C
C
C
C
C
C
C
C

N

��

C

!!
B
B
B
B
B
B
B
B

R[X ]

Z

��

C[X ]

Q

where nat stands for the inductively defined natural numbers. Polynomial rings
will be introduced in Section 4.4.1.

3.5.1 Natural numbers

Let us first formulate a list of postulates which should be satisfied by any represen-
tation of the natural numbers.

3.5.1. Definition (The Peano postulates). Given a signature

<N, 0, S, +,×> .

The Peano postulates consist of the following list of sentences.

PP1 : ∀x ∈ N.(S x) 6= 0,

PP2 : ∀x, y ∈ N.((S x) = (S y))→(x = y),
PP3 : ∀x ∈ N.(x + 0) = x,

PP4 : ∀x, y ∈ N.(x + (S y)) = (S (x + y)),
PP5 : ∀x ∈ N.(x× 0) = 0,

PP6 : ∀x, y ∈ N.(x× (S y)) = (x + (x× y)),
PP7 : ∀φ ∈ N→PROP.(φ 0)→

(∀x ∈ N.(φx)→φ (S x))→
(∀x ∈ N.φ x)

The formalization of natural numbers does not pose any real difficulties. Depending
on the type system used, several approaches are possible. We will review these
briefly. For all approaches we only define natural numbers as a type. We could
transform them into a setoid by adding an appropriate equivalence relation like
Leibniz equality.

Axiomatic

When we work in a second-order predicate logic, the following context may be used
also as an axiomatization of the Peano postulates.
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3.5.2. Definition. Define the context of Peano axioms.

PAAx ≡ natA : SET

0 : natA,

S : natA→natA,

PA1 : Πx:natA.¬((S x) = 0),
PA2 : Πx, y:natA. ((S x) = (S y))→(x = y),
PA7 : Πφ:natA→PROP. (φ 0)→

(Πx:natA. (φx)→φ (S x))→
(Πx:natA. φ x)

where = stands for Leibniz equality.

By definition, Leibniz equality is compatible with S. Because we work in second-
order predicative logic, we are able to define primitive recursive functions like pre-
decessor, addition or multiplication by some relation R. After we have shown that
this R is a graph, we feel safe to extend the context PAAx with a fresh variable fR
together with a defining formula of fR for R.

3.5.3. Definition. We introduce the addition as follows.
(i) Define the relation plusrel and prove it is a graph.

plusrel : natA→natA→natA→PROP

≡ λx, y, x:natA
∀P :natA→natA→natA→PROP.

(∀x:natA. P x 0 x)→
(∀x, y, z:natA. (P xy z)→P x (S y)(S z))→
(P xy z)

plusgraph : ∀x, y:natA ∃!z:natA. plusrel x y z

≡ x. . .y

(ii) Extend the context PAAx with

Γplus ≡ plus : natA→natA→natA,

PA3,4 : ∀x, y, z:natA. (plusrel x y z)↔ ((plusx y) = z) .

It is easy to show that the addition thus defined is a commutative associative func-
tion for which x + 0 = x and x + (S y) = S (x + y) holds for any x, y : natA. In a
similar way multiplication can be introduced.

If we assume the strong axiom of unique choice AUCΣ (see Section 3.2.2), there
is no need to extend the context PAAx. This is because with AUCΣ we can define
plus such that PA3,4 holds.

Encodings

Besides an axiomatization we can also realize the Peano postulates by an con-
struction. Often it is desirable to keep the context of auxiliary axioms as small as
possible. This is especially important when we wish to develop meta-theory like
consistency. In λ-calculus, the Church-numeral encoding can be used to construct
the natural numbers. The Peano postulates with respect to the Church numerals
turn out to be derivable from a small auxiliary context.
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3.5.4. Definition. (i) Define the polymorphic type of Church numerals.

natC : SET

≡ Πα:PROP. α→(α→α)→α

0 : natC
≡ λα:PROPλx:α λf :α→α. x

S : natC→natC
≡ λn:natC λx:α λf :α→α. f (n α x f)

(ii) Define a context PACh from which the Peano postulates are derivable.

ind : natC→PROP

≡ λn:natC Πφ:natC→PROP. (φ 0)→
(Πn:natC . (φn)→φ (Sn))→
(φn)

PACh ≡ PA0 : ¬((S 0) = 0),
PA7 : Πn:natC . indn

The system needed in this case is second-order predicate logic. Also in this system
we take Leibniz equality for equality over natC .

3.5.5. Lemma. From the context PACh, the Peano postulates for the Church nu-
merals are derivable.

Proof. The postulate PP7 is satisfied by PA7. Define pairing <, > and the first and
second projection. Next we define the predecessor following Kleene as

P− : natC→natC
≡ λn:natC . (n (natC×natC) (λz:natC×natC . <z2, S z1>)<0, 0>)1 .

Then we show using the induction scheme PA7 that P− (S x) = x for all x : natC .
For technical reasons, we also need to show that P− 0 = 0.

(i) Suppose (S x) = (S y) for some x, y : natC . Then we have P− (S x) = P− (S y),
and hence x = y. So we have PP2.

(ii) To prove PP1, we apply the induction axiom PA3. The base case is proven
immediately by PA0. For the induction step, suppose S (S x) = 0 for some x : natC .
Then P− (S (S x)) = P− 0. So S x = 0, and by the induction hypothesis we are done.

(iii) Define addition as follows.

plus : natC → natC → natC
≡ λn, m:natC λαpPROPλx:α λf :α→α. m (n x f) f

Using PA2 and PA7 it is easy to prove PA3. PA4 holds directly by reflexivity of
equality.

(iv) Define multiplication as follows.

times : natC → natC → natC
≡ λn, m:natC λαpPROPλx:α λf :α→α. m x(λx:α. n x f)

PA5 and PA6 hold directly by reflexivity of equality.

Also other functions like exponentiation can be defined directly because Church
numerals support iteration.
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We could strip the context PACh to only PA0 if we relativize every quantifica-
tion over natural numbers with the ind predicate. So for each formula φ(x) the
translation of the expression ∀x:N. φ(x) will be

p∀x:N. φ(x)q = Πx:natC . (indx)→pφ(x)q .

Using this mechanism, the assumption that the Church numeral 0 differs from the
Church numeral S 0 suffices to prove the Peano postulates. See (Ruys 1991) for
details.

3.5.6. Remark. In most textbooks, Church numerals are defined as

nat′C ≡ Πα:PROP. (α→α)→α→α .

Obviously, every closed inhabitant of natC has a corresponding term in nat′C . How-
ever, the term λα:PROPλf :α→α. f , an η-reduct of the Church numeral 1, lives in
nat′C but has no counterpart in natC . Because natC has fewer closed inhabitants,
we prefer the definition natC over nat′C .

Inductively

If we have inductive types, we can get rid of the context Γnat completely. Induc-
tively defined natural numbers have the advantage that by definition they form the
smallest type in which 0 lives and which is closed under S.

3.5.7. Definition. We recall nat from Definition 3.1.1 and use Leibniz equality
to obtain the set of natural numbers.

nat : SET

≡ µα:SET. (zero : α, SN : α→α)

N : Set

≡ <nat, =Lpnat, x. . .y>
The system needed is second-order logic with inductive types. The reader is referred
to Section 4.2 for more formalizations concerning natural numbers.

3.5.8. Example. As an example, we present the definition of addition and multi-
plication.

+ : nat→nat→nat

≡ λx:nat. εnat zero =⇒ x

SN y =⇒ SN (x + y)
× : nat→nat→nat

≡ λx:nat. εnat zero =⇒ zero

SN y =⇒ x + (x× y)

Binary

Formalizations of the natural numbers based on Peano arithmetic are inadequate
for real world applications. For example, in our case study 4.2 it is impossible
to compute the seventh prime number using inductively defined naturals within
reasonable time. The essence of the problem of Peano numbers is that it is a
unary representation. Suppose that f is a function which is defined by iteration
on its argument. In most cases, the type checker needs order n reduction steps to
compute the value of f(S n(0)). A possible solution is to use a binary representation.
In (Huisman 1997) an efficient formalization of binary natural numbers is given.
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3.5.2 Integers

From the natural numbers, integers can be defined as a quotient set over N× N.

3.5.9. Definition. (i) An integer is a tuple of natural numbers. Two integers
x = <x1, x2> and y = <y1, y2> are equal if and only if x1 − x2 = y1 − y2.

int : SET

≡ prodnat nat

Eqint : int→int→PROP

≡ λx, y:int. x1 + y2 = x2 + y1

Z : Set

≡ <int, Eqint, x. . .y>

(ii) We define zero, the identity, negation, addition and multiplication as follows.

0Z : elZ
≡ <0, 0>

1Z : elZ
≡ <1, 0>

negZ : Z⇒Z
≡ <λx : elZ.<x2, x1>, x. . .y>

addZ : (Z× Z)⇒Z
≡ <λx, y : elZ.<x1 + y1, x2 + y2>, x. . .y>

multZ : (Z× Z)⇒Z
≡ <λx, y : elZ.<x1 × y1 + x2 × y2, x1 × y2 + x2 × y1>, x. . .y>

3.5.10. Lemma. The set Z forms a commutative ring with respect to the operators
defined in Definition 3.5.9.

Proof. Trivial.

3.5.11. Remark. We did not need the integers nor the rationals in our case studies.
So we have not formalized the lemmas in this section and the next.

3.5.3 Rational numbers

Following a similar scheme, we can define the rationals.

3.5.12. Definition. A rational is a tuple of an integer and a natural number. Two
rationals x = <x1, x2> and y = <y1, y2> are equal if and only if x1 × (y2 + 1) =
y1 × (x2 + 1).

rat : SET

≡ prod int nat

SNZ : nat→ int

≡ λx:nat. <SN x, 0>

Eqrat : rat→rat→PROP

≡ λx, y:rat. x1 × (SNZ y2) = y1 × (SNZ x2)

Q : Set

≡ <rat, Eqrat, x. . .y>
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After defining the constants zero and one in Q, and the negation, the inverse func-
tion, and the addition and multiplication functions over Q in a proper way, we can
show that Q forms a field.

3.5.4 Real numbers

One approach to introduce the real number system is by a construction, for example
by Cauchy sequences. This is worked out by (Jones 1991, Elbers 1993). Another
approach is to introduce the reals axiomatically. Obviously this is much less work
than a full construction. Because we will assume decidability of equality of real
numbers anyway, the wish to be constructive is not so strong anymore.

One possible axiomatization of the real numbers is as an Archimedean ordered
field which is Cauchy complete. See (Dieudonné 1960) for more details.

3.5.13. Definition. The real number system R is a set for which the following
conditions hold.

(i) R is an ordered field.
(ii) R satisfies the axiom of Archimedes : for any pair x, y of real numbers such

that 0 < x, 0 ≤ y, there is an integer n such that y ≤ n× x.
(iii) R satisfies the axiom of nested intervals: Given a sequence ([an, bn]) of closed

intervals such that an ≤ an+1 and bn+1 ≤ bn for every n ∈ N, the intersection of
that sequence is not empty.

Another equivalent axiomatization of the real number system is by using Dedekind
cuts. See (Huntington 1955) for more details on the Dedekind postulates.

3.5.14. Definition. The real number system R is set such that the following con-
ditions hold.

(i) R is an ordered field.
(ii) R satisfies the Dedekind postulate: every non-empty bounded subset of R

has a supremum.

We have chosen to use a weaker axiomatization, namely that of a real closed
field. The reason for this decision was pragmatic. First, in our case studies, the
axiomatization by a real closed field was strong enough to develop all theories.
Furthermore, it would take quite some effort to prove the axioms of a real closed
field from one of the two stronger axiomatizations. As a positive spin-off, all results
for R in our work also hold for algebraic complex numbers.

On the other hand we strengthen our axiomatization by adding the assumption
that the set of real numbers is discrete. In other words, we assume that the equality
over reals is decidable. So we work in a classical setting. In fact, this is the only
classical assumption we will make in our LEGO library.

3.5.15. Definition. The real number system R is defined as a real closed field. So
R is

(i) a discrete ordered field,
(ii) such that every polynomial in R of odd degree has a root,
(iii) and which has a square root function over R.
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3.5.16. Example. Define the unary function absolute value over real numbers.
We could do this using a definition by case distinction on the sign of the argument.
Instead, we choose to use the square root because it more closely resembles the
definition of the absolute value function in C. Furthermore, we define a sign function
over the reals.

AbsR : R⇒R
≡ <λx:elR. SqrtR (timesR (x, x)), x. . .y>

SignR : R⇒R
≡ <λx:elR. select (x. . .y : x < 0 ∨ x ≥ 0) (−1) 1, x. . .y>

3.5.5 Complex numbers

From the reals we can construct the field of complex numbers. The approach using
polar coordinates involves trigonometry. Because it would be quite a lot of effort to
formalize trigonometry, we choose to define the complex numbers by ordered pairs
of real numbers (Hamilton 1837).

3.5.17. Definition. (i) The complex numbers are defined as Cartesian coordi-
nates of real numbers. A complex number consist of a real and an imaginary part.
Two complex numbers are equal if their real and imaginary parts are equal as real
numbers.

C : Set

≡ ProdRR
0C : elC
≡ <0R, 0R>

1C : elC
≡ <1R, 0R>

i : elC
≡ <0R, 1R>

(ii) We define negation, addition and multiplication over complex numbers as
follows.

NegC : C⇒C
≡ <λx:elC. <NegR (x1), NegR (x2)>, x. . .y>

PlusC : (C× C)⇒C
≡ <λx, y:elC. <PlusR (x1, y1), PlusR (x2, y2)>, x. . .y>

MinusC : (C× C)⇒C
≡ <λx, y:elC. PlusC (x, NegC (y)), x. . .y>

MultC : (C× C)⇒C
≡ <λx, y:elC. <MinusR (MultR (x1, x2), MultR (y1, y2)),

PlusR (MultR (x1, y2), MultR (y1, x2))>, x. . .y>
RecipC : C⇒C

≡ <λx:elC. <DivR (x, AddR (SquareR (x1), SquareR (x2))),
DivR (NegR (y),

AddR (SquareR (x1), SquareR (x2)))>,

x. . .y>

3.5.18. Lemma. The set C forms a commutative field of complex numbers with
respect to the terms defined in Definition 3.5.17.
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Proof. For a proof, see the LEGO library.

3.5.19. Example. We can define for example the scalar product and absolute value
for complex numbers.

ScProdC : (C× C)⇒R
≡ <λx, y:elC. PlusR ((TimesR (x.1, y.1)), (TimesR (x.2, y.2))),

x. . .y>
AbsC : C⇒R

≡ <λz:elC. SqrtR (ScProdC (z, z)), x. . .y>

The reader is referred to the LEGO library for a development of the theory of
complex numbers.



Chapter 4

Case Studies

Formalizing mathematics may be separated into three distinguished actions. Sup-
pose we wish to prove a certain theorem. First we need logic: we need a framework in
which we can reason. We need to know which rules we accept and which we do not.
Next we need to define the mathematical objects we wish to reason about. Proba-
bly one already has a library of basic concepts like the ones defined in Chapter 3.
But almost always one needs to extend it. And a third part of doing mathematics
is to make computations.

In this chapter we present several case studies to make clear how these actions
are performed in a proof-checker based on type theory. Note that here we study the
methodology used in proofs. Hence none of the proofs presented here are mathemat-
ically original work. The first case study shows how one can use a type checker to
reason. We will formalize a proof of a purely logical statement called the ‘Drinkers
Principle’. The next case study is a formalization of Euclid’s theorem of the ex-
istence of infinitely many primes. Here we will show how one could automatically
compute prime numbers from a constructive proof. The next formalization deals
with a proof where a lot of equational reasoning is involved. The last case study
is the most comprehensive one. It describes our attempt to give a fully formalized
proof of the fundamental theorem of algebra. Here every aspect of formalization
comes in, the biggest effort being the development of all notions and lemmas the
theorem is built on.

4.1 Drinkers Principle

Smullyan’s Drinkers Principle states that in every bar you can always point out
someone with the following property: everyone is drunk whenever he is. This
theorem is interesting because it is a purely logical sentence. Also the proof of
this classically true statement is non-trivial. We will compare a proof in ‘my best
mathematical style’ (Barendregt 1996) to a formal proof in natural deduction style,
and to a proof in type theory.

4.1.1. Theorem. Let Cafe be a non-empty set, Drunk a predicate over Cafe.

∃x[Drunk(x)→ ∀y[Drunk(y)]] .

Proof (Informal). By case distinction. If everyone is drunk, then the theorem is

53
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trivially true. Otherwise there will be somebody who is not drunk. This person
makes the implication true.

We could not avoid to make use of an application of excluded middle. Excluded
middle is logically equivalent to double negation, which is a rule only accepted in
classical logic. When we formalize the proof, we will see that we actually need two
applications of excluded middle. This appears in the next formal proof in natural
deduction style.

Proof (natural deduction). Suppose we have a signature consisting of a set C, a
predicate D and a constant a. The constant formalizes that C is a non-empty set1.
Define the predicate φ(x) as D(x) → ∀y[D(y)]. Now we have to prove ∃x[φ(x)].
Recall that ¬A is defined as A → ⊥, and that from ⊥ follows anything we wish
(⊥-elimination).

D(a)5

¬D(z)8 D(z)11

13
⊥

12
∀y[D(y)]

11
φ(z)

10
∃x[φ(x)] ¬∃x[φ(x)]2

9
⊥

8
¬¬D(z)

7
D(z)

6
∀y[D(y)]

5
φ(a)

4
∃x[φ(x)]

3
⊥

2
¬¬∃x[φ(x)]

1
∃x[φ(x)]

The emphasized steps 1 and 7 indicate an application of double negation.

In an interactive proof development tool like LEGO, a similar proof would be gen-
erated by use of tactics called Refine and Intros. The tactic Refine corresponds
to modus ponens, and the tactic Intros to → introduction or to generalization. In
contrary to mathematical practice, proofs are built by backward reasoning. That is
why we numbered the natural-deduction proof starting from the last line and up.

Proof (type checker). Let Dn : ∀P :PROP.¬¬P → P be the axiom of double nega-
tion. Let C : SET, assume we have an a : C which makes C non-empty, and let D :
C → PROP be a predicate over C. Define a predicate φ as λx:C. (D x)→ Πy:C. D y.
Starting from our initial goal Exφ, we execute the following LEGO tactics.

1Also we could formalize ‘the set A is non-empty’ by assuming ∃a ∈ A[φ] for some arbitrary

provable proposition φ. This way, we do not have to extend the signature with a constant. In type

theory both approaches are provably equivalent.
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# Goal Tactics Rule
1. Exφ Refine Dn ; double negation
2. ¬¬Ex φ Intros H2; → introduction
3. ⊥ Refine H2; modus ponens
4. Exφ Refine ExIntro; Refine a; ∃ introduction
5. φa Intros H5; → introduction
6. Π y.D y Intros z; ∀ generalization
7. D y Refine Dn ; double negation
8. ¬¬(D y) Intros H8; → introduction
9. ⊥ Refine H2; modus ponens

10. Exφ Refine ExIntro; Refine z; ∃ introduction
11. φ y Intros H11; → introduction
12. Π y.D y Refine ExFalso; ex falso sequitur quodlibet
13. ⊥ Refine H8; Refine H11; modus ponens

See Section A.3.3 for an exact screen dump of the LEGO session above.

Of course, this is only a proof if we believe that the type checker only accepts
tactics which leads to a proof of a true statement. The type checker generates a
typed lambda-term as proof object. The type corresponds to the theorem, and the
term corresponds to a proof. For a ‘second opinion’, any type checker could be used
to verify that the term has indeed the indicated type.

Proof (Type theory).

Dn (Ex φ)
(λH2:¬(Ex φ).

H2

(ExIntroφ

(λH5:D a.

λz:C.

Dn (D z)
(λH8:¬(D z).

H2

(ExIntroφ

(λH11:D z.

ExFalso (Πy:C. D y)
H8 H11)))))))

: Exφ

The lambda term above is unreadable for human eyes. A type checker should type
it by ∃x[φ(x)]. So if we believe the correctness of the type checker, we will regard
the term as a proof of the Drinkers Principle. Also the list of tactics for the type
checker we presented is hard to grasp. The way an interactive type checker works
is that for every step it will present us a list of assumptions and a subgoal to prove.
This way, it is clear what to prove and which tactics to use. Also the type checker
will do book-keeping like discharging local variables for us. Furthermore during a
proof session, it will help us to focus on which subgoals still need to be proven.

If we look at the way an interactive type checker works, and how proofs are con-
structed in mathematical practice, one important difference comes up. The former
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forces us to reason backwards, the latter also allows forward reasoning. Backward
reasoning needs a shift of attitude and may be counter intuitive for mathemati-
cians. However, our experience showed that one gets used to backwards reasoning
very easily.

4.2 There are infinitely many primes

Already Euclid showed that there exist infinitely many primes. We will formulate
the theorem as ‘for every natural number x, there exists a prime y which is bigger
than x’. We will give a constructive proof. By the nature of constructive proofs,
our proof will consist of an algorithm which assigns to every natural number x a y

together with a proof that y is a prime bigger than x. We will be able to extract
this algorithm and get a lambda term which really computes a bigger prime from
an arbitrary starting point. By use of this function, we construct a prime generator
which computes for every natural number n the n-th prime number.

The aim of this case study is to see how computation is possible type theory.
Also we will show how we can use proofs to construct functions.

First we define a predicate is prime as

is prime (x) ≡ (x > 1) & (∀y:nat. (1 < y < x)→ (y - x))

and give a constructive proof that this predicate is decidable. Applying the mech-
anism introduced in Section 3.3.4, we form the characteristic function Kprime for
which

` ∀x:nat. (Kprime x) = 0↔ is primex ,

and such that for natural number n

(Kprime n) =βι 0 iff n is a prime number .

Next we give a constructive proof that there are infinitely many primes, which we
formalize by proving that for every natural number x we can find a prime number
y which is bigger than x. Also we give an upper bound for this y, so we can apply
bounded minimalization to define a function prime such that

prime0 =βι 2,

prime1 =βι 3,

prime2 =βι 5,

...

We will prove that prime generates, strictly increasing, all prime numbers.

4.2.1. Remark. If we had used classical logic, we would lose these computational
equalities. So then the convertibility relations above would not hold. However, the
‘logical’ equations

prime0 =L 2,

prime1 =L 3,

prime2 =L 5,
...

would still be provable.
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4.2.1 Formalization of Euclid’s theorem

We will give a formalization of the theorem in more detail. We skip some basic
definitions like the operations <, |, factorial. For a fully formalized proof with all
the details, the reader is referred to the LEGO library.

4.2.2. Definition. Define a predicate ‘is prime number’, ‘is not a prime number’,
and ‘is a prime factor’.

is prime : nat→PROP

≡ λx:nat. (1 < x) &
(∀y:nat. (1 < y)→(y < x)→(y - x))

is dividable : nat→PROP

≡ λx:nat. (1 < x)→(∃y:nat. (1 < y) & (y < x) & (y | x))

is prime factor

: nat→nat→PROP

≡ λa, b:nat. (a | b) & (is primea)

Because we wish to be constructive, we need to be careful with the negation of
propositions. So we formalized ‘not is prime’ as ‘there exists a true divisor’. We
can prove for example that 3 is a prime.

ThreeIsPrime : is prime3
≡ x. . .y

For natural number n, the size of a proof of is primen is linear in n. We will see
how we can reduce it to a size independent of n.

4.2.3. Lemma. The predicate is prime is decidable, that is for any natural number
x we have (is primex) ∨ ¬(is primex). Formally,

is prime dec : decidable pred is prime

≡ x. . .y .

Proof. First we prove that

∀x, a:nat. (∀y:nat. (1 < y)→(y < a)→(y - x)) ∨
(∃y:nat. (1 < y) & (y < a) & (y | x)) .

Then trivially
∀x:nat. (is primex) ∨ (is dividablex)

holds too. Now let x be a natural number. We distinguish two cases. Suppose
is primex holds, then we are done. Suppose is dividablex holds. We first prove
that

∀xpnat. (is primex)→(is dividablex)→⊥ .

Then we know ¬(is primex) and we are done.

Note that from a classical point of view Lemma 4.2.3 is trivial. But if we would
have used classical logic, the next definition would lose its nice properties.

4.2.4. Definition. Define the characteristic function Kprime using the decidability
of prime.

Kprime : nat→nat

≡ char is prime dec



58 CHAPTER 4. CASE STUDIES

See Section 3.3.4 for the definition of char . Because the proof is prime dec is
constructive, we have that for all natural numbers n

(Kprime n) =βι 0 iff n is a prime .

4.2.5. Example. Now it becomes very easy to check whether a natural number is
a prime or not.

K prime intro : ∀xpnat. (is primex)→((Kprime x) =L 0)
≡ x. . .y

K prime elim : ∀xpnat. ((Kprime x) =L 0)→(is primex)
≡ x. . .y

FiveIsPrime : is prime5
≡ K prime elim (ReflL(Kprime 5))

NotSixIsPrime : ¬(is prime6)
≡ λH :is prime6. Succ not zero0 (K prime introH)

where Succ not zero is a proof of

∀x:nat.¬((SN x) = 0) .

If we look at the definition of FiveIsPrime, we could be tempted to write the
simpler term

K prime elim (ReflL0) .

However, this lambda term is not typable by the LEGO system because we make use
of the argument synthesis mechanism in the definition of the term K prime elim .
So the type checker has to be able to find an x such that the next argument has
type ((Kprime x) =L 0). But obviously, (ReflL0) has type (0 = 0).

4.2.6. Lemma. Every natural number bigger then one has a prime factor.

has prime factor : ∀x:nat. (1 < x)→∃y:nat. is prime factory x

≡ x. . .y

Proof. By course of values induction.

4.2.7. Theorem. Given a natural number x there exists a natural number y such
that

– y is a prime,

– y is bigger than x, and

– for y we have an upper bound depending only on x.

Formally:

infinitely bounded primes exist

: ∀x:nat∃y:nat. (x < y) & (y ≤ (SN (facx))) & (is primey)
≡ x. . .y

Proof. Set z = x! + 1. By Lemma 4.2.6, z has a prime factor y. Suppose y ≤ x.
Then y | x! holds. Because y | z, we must conclude y = 1, which by definition
cannot be the case. So x < y.
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4.2.8. Corollary (Euclid). Given a natural number x. We can always find a
prime y which is bigger than x.

infinitely primes exist : ∀x:nat∃y:nat. (x < y) & (is prime y)
≡ x. . .y

Proof. Immediate from Theorem 4.2.7.

4.2.2 Bounded minimalization

For decidable predicates φ(x) over the natural numbers, we wish to define bounded
minimalization

µx < z. φ(x)

such that it computes the smallest x smaller than z for which φ(x) holds. If there
exists no such x, it should return z. Indeed, using case distinction we are able to
define bounded minimalization.

4.2.9. Definition. Let φ be a predicate for which φdec : decidable predφ is a
proof that φ is decidable. We define bounded minimalization as follows.

mu′φ : nat→nat→nat

≡ εnat zero =⇒ λz:nat. z
(SN x) =⇒ λz:nat. (mu′φ xx) if φx

(mu′φ x z) otherwise
muφ : nat→nat

≡ λz:nat. mu′φ z z

Next we prove some basic properties of mu.

4.2.10. Lemma. Let φ be a decidable predicate.
(i) Bounded minimalization is sound.

mu phi : Πzpnat. ((muφdec z) 6= z)→ φ (muφdec z)
≡ x. . .y

(ii) Bounded minimalization is bounded.

mu UB : Πz:nat. (muφdec z) ≤ z

≡ x. . .y

(iii) Bounded minimalization returns the smallest value, if it exists.

mu OK : Πxpnat. (φx)→ Πz:nat. (muφdec z) ≤ x

≡ x. . .y

Proof. The reader is referred to the LEGO library.

4.2.3 Prime generator

Now we can use bounded minimalization to define a prime generator.
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4.2.11. Definition. Define a relation is new prime which states that y is a prime
bigger than x.

is new prime : nat→nat→PROP

≡ λx, p:nat. (is primep) & (x < p)

4.2.12. Lemma. Let x be a natural number. The predicate is new primex is de-
cidable.

is new prime dec : decidable pred (is new primex)
≡ x. . .y

4.2.13. Definition. (i) Using bounded minimalization, define a function over N
which returns a prime number bigger than its argument, called a new prime.

new prime : nat→nat

≡ λx:nat. mu (is new prime decx)(SN (x!))

(ii) The prime generator is just an iteration of new prime, starting from 2.

prime : nat→nat

≡ εnat zero =⇒ 2
(SN x) =⇒ new prime (primex)

4.2.14. Lemma. (i) The function prime only generates primes.

prime is prime : ∀i:nat. is prime (prime i)
≡ x. . .y

(ii) The function prime is strictly increasing.

prime grows : ∀i:nat. (prime i) < (prime (SN i))
≡ x. . .y

(iii) The function prime generates all primes.

prime surj : ∀x:nat. (is primex)→∃i:nat. x =L (prime i)
≡ x. . .y

Because the definition of the prime generator prime was a constructive defini-
tion, the type checker can compute prime numbers by normalizing. So the following
convertibility relations hold.

prime0 =βι 2,

prime1 =βι 3,

prime2 =βι 5,

...

we can use this fact to quickly get a proof that

prime1 : (prime1) =L 3
≡ ReflL(prime1)

Unfortunately, if the prime number we wish to compute grows, the verification time
quickly gets out of hand2.

2On our hardware, the normalization of prime 2 needed a heap space of more than 300

megabytes. It took a whole day to check. Not to mention how much resources it would take

to compute prime 1999. This suggests that either the algorithm we used is not really efficient, or

the type checker used is not implemented efficiently. Or both.
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4.3 Binomial theorem

In this section will show how equational reasoning can be done in type theory.
We take Newton’s Binomial Theorem as a case study. Let us first formulate the
theorem.

4.3.1. Theorem. Let R be a commutative ring, x and y elements of R. Then for
all n in N

(x + y)n =
n∑
i=0

(
n

i

)
xn−iyi .

It seems to be mathematical practice to define the binomial function in terms of
factorials. (

n

m

)
≡ n!

m!(n−m)!

However proofs of properties of binomials get much more simple if we use a lower
level definition3. So instead we present an equivalent definition of the binomial by
nested recursion. This way we we avoid the need of factorials and division.

4.3.2. Definition. We define the binomial coefficients directly by double recursion
on its arguments.()

: nat→nat→nat

≡ ε2
nat n, 0 =⇒ 1

0, SN m =⇒ 0

SN n, SN m =⇒
(

n

SN m

)
+
(

n

m

)
Next we need a notion for summation. We always start from zero.

4.3.3. Definition. Let R be a ring. We define summation from zero by recursion.∑( )
i=0( ) : (nat→(objR))→nat→(objR)

≡ λf :(nat→(objR)). εnat zero =⇒ f 0
(SN n) =⇒ (

∑n
i=0 f) + f(SN n)

4.3.4. Lemma. Let q be a natural number. Set p ≡ SN q and n ≡ SN p. Then

(x + y)0 =
0∑
i=0

(x0−iyi)
(

0
i

)
, (4.1)

(x + y)1 =
1∑
i=0

(x1−iyi)
(

1
i

)
, (4.2)

(x + y)px =
p∑
i=0

(x(SN p)−iyi)
(

p

i

)
, (4.3)

(x + y)py =
p∑
i=0

(x(SN p)−(SN i)yS
N i)
(

p

i

)
, (4.4)

(x + y)px = (xn−0y0)
(

n

0

)
+

p∑
i=0

(xn−(SN i)yS
N i)
(

p

i

)
. (4.5)

3Here we offend the principle formulated in Section 3.0.1. But every rule should have exceptions.
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Proof. By a lot of equational reasoning (see for details the LEGO library in Ap-
pendix A.3.)

4.3.5. Theorem. Let R be a commutative ring, x and y elements of R. Then for
all n in N

(x + y)n =
n∑
i=0

xn−iyi
(

n

i

)
.

Proof. By nested induction on n. The proof is straightforward, but involves a lot of
rewriting of parentheses and applications of the ring axioms. For a fully formalized
proof, the reader is referred to the LEGO library (Appendix A.3).

4.4 Fundamental theorem of algebra

The formalization of a proof of the fundamental theorem of algebra forms the main
part of our case studies. The reason we chose this particular theorem to formalize
is twofold. First, although the theorem is easy to formulate and formalize, proofs of
the theorem are highly non-trivial and often quite large. We need a huge database
of definitions and supporting lemmas in order to be able to reach the level of math-
ematics at which we can prove the theorem. Although the name of the theorem
suggests it belongs to algebra, there is also a great deal of analysis involved. Second,
the theorem is interesting because during the last centuries many different proofs
have been given by many great mathematicians. Some proofs are intuitionistic,
some classical. Some proofs are highly abstract, using for example Galois Theory4,
and others are very syntactical of nature. Also some proofs make use of a lot of
analysis, others are more based on algebra. Most proofs of the theorem, if not all,
involve polynomials in the real and complex field. So we first develop the concept
of polynomial rings.

4.4.1 Polynomial rings

In order to formalize polynomials and construct polynomial rings, let us cite (van der
Waerden 1931).

4.4.1. Definition. Let R be a ring and let G be an infinite cyclic group generated
by an indeterminate X . Polynomials in X over R are elements of the set R[X ]

f ≡
n∑
i=0

aiX
i ,

where ai ∈ R. We call ai the coefficients of the polynomial f . The degree of a
non-zero polynomial f is n.

When we wish to formalize polynomials, we have to make a few implementation
decisions. Let R be a ring. Following the definition above, the most straightforward
way to define a polynomial f ∈ R[X ] is as a list over R, such that the head of the
list f is non-zero. Then for example f [X ] = X3 + 4X ∈ N[X ] would be denoted by

f ≡ 1̂0̂4̂0̂∅ .

4For a large scale formalization of Galois Theory, see (Bailey 1998).
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Two polynomials f and g are equal if and only if the lists f and g are element-wise
equal. For reasons explained below, this implementation is not comfortable for more
complex situations. Hence this definition is not suitable as a general representation
of polynomials.

Constructive definition

Suppose the carrier of the ring R is not discrete. Then we cannot decide whether
x = y for arbitrary x, y ∈ R. So if we add two polynomials f and g of the same
degree, we do not know in general if the resulting polynomial f + g has the same
degree, or a lower degree. To be constructive we have to admit trailing zeros in our
representation of polynomials.

f ≡ 0̂0̂1̂0̂4̂0̂∅
could be used to denote f [X ] = X3 + 4X too. Also we have to extend the equality
relation over polynomials in order to quotient f and f ′. Unless the carrier of R is
a discrete set, a polynomial does not need to have a degree. We only have a notion
of a maximum degree.

Sparse polynomials

In some cases, the sequence of coefficients of a polynomial is sparse. For example,
consider the polynomial g[X ] = 1 + X183. Because most coefficients are zero, it
would be rather inefficient to represent g by a list of length 184, almost completely
filled with zeros. So we prefer to represent polynomials by lists of tuples of type
R×N. Every tuple <a, i> stands for the monomial aX i, and a list of tuples is used
to represent a polynomial. That way we obtain a much more concise representation
in the case of sparse polynomials. So

<1, 183>̂<1, 0>̂∅
may be used to denote the polynomial g. Another advantage is that this represen-
tation allows us to define polynomials with non-constant indices. For example,

g ≡ λn:N. <1, n>̂<1, 0>̂∅
represents gn[X ] = 1 + Xn.

Multivariate polynomials

In standard literature, multivariate polynomials, or polynomials in more indetermi-
nates are usually defined by iteration of ring adjunction R→ R[X ]:

R[X1, . . . , Xn] ≡ R[X1, . . . , Xn−1][X ] .

Although it is a clear and simple definition, in practice it has two drawbacks. First,
representatives for polynomials will quickly grow in complexity if the number of
indeterminates increases. For example, to denote h[X, Y ] = 3XY 2 + X3 we need
an expression like

h ≡ <<1, 0>̂∅, 3>̂<<3, 2>̂∅, 1>̂∅ ,
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which is quite unreadable. Another drawback of multivariate polynomials defined
by iteration is that all theory concerning polynomial rings has to be developed
twice: once for the case of the ring R[X ], another time for the case of the ring
R[X1, . . . , Xn]. So we define the multivariate polynomials as a primitive notion,
and consider the polynomials in one indeterminate as a special case by instantiation.
For this we introduce the notion of index monoids. Index monoids will form the
type of indices.

4.4.2. Definition. An index monoid is an abelian monoid such that

1. the cancellation law holds,

2. it is ordered, and

3. the carrier is a discrete set.

Examples of index monoids are N and Nn. So our polynomial h will be constructed
by

h ≡ <3, <1, 2>>̂<1, <3, 0>>̂∅ .

Relaxed polynomials

Finally, we add one more degree of freedom to our representation of polynomials.
We allow multiple coefficients of the same index. Also we remove the condition that
the indices have to be ordered. An important advantage of such a liberal approach
is that in most cases the definition of operators on polynomials is greatly simplified.
For example, the addition operator merely becomes list concatenation. To be able
to define equality over polynomials, we first define the coefficient operator. Let f

be a polynomial and i an index. The coefficient fi is defined by traversing the list f

while adding all first projections of the pairs whenever the second projection equals
i. Equality over two polynomials f and g is defined by

f = g ≡ ∀i[fi = gi] .

As pointed out in Section 3.0.1, there is a price to pay for our relaxed definition.
Although now it is easy to define certain operators over polynomials, it is sometimes
difficult to prove that these operators preserve equality over polynomials. The
reason is that for operators over polynomials, we have lost reasoning by induction on
the degree. We do have reasoning by induction on the length of the list representing
the polynomial, but this induction principle is a bit weaker. But again, as pointed
out in Section 3.0.1, we prefer relaxed polynomials in formalizing mathematics.

Polynomial rings

We summarize this section by giving the final formal definition of the set of polyno-
mials we have chosen to work with. Note that because index monoids are discrete,
we may define objects by case distinction on the equality of elements of an index
monoid.

4.4.3. Definition. Let I be an index monoid and let R be a ring. Recall that
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‘ifx y a b’ should be read as ‘if x = y then a otherwise b’.

Monomial : Set

≡ Prod (carR)(car I)

poly : SET

≡ list (el Monomial)

coef : poly→(obj I)→(objR)
≡ εlist ∅ =⇒ λi:obj I. 0R

(t̂f) =⇒ λi:obj I. if π2
2(t) i

π2
1(t) +R (coef f i)

(coef f i)
=poly : poly→poly→PROP

≡ λf :polyλf :poly∀i:obj I. (coef f i) = (coef g i)

Poly : Set

≡ <poly, =poly, x. . .y>

4.4.4. Definition. Let I be an index monoid and let R be a ring. Set P ≡
PolyI R.

0Poly : elP

≡ ∅
1Poly : elP

≡ <1R, 0I>̂∅
plusPoly : (elP )→(elP )→(elP )

≡ λf :elP . εlist ∅ =⇒ f

(t̂g) =⇒ t̂(plusPolyf g)

Allthough slightly more complicated, we can define the multiplication and inverse
over polynomials in a similar fashion. Also we can show that Poly forms a ring.
This is done in the LEGO library.

4.4.5. Definition (polynomial application). Let I be an index monoid, and R be
a commutative ring. Let n be a natural number, set Rn : Set ≡ Vector (carR)n

and let

Power : Fun2 Rn (car I) (carR)

be an exponentiation function such that we have proofs for

∀x:el Rn. (ap2 Powerx 0I) = 1R
∀x:el Rn∀a, b:obj I. (ap2 Powerx (a +I b)) =

((ap2 Powerxa)×I (ap2 Powerx b))

Set P ≡ Poly I R. We define polynomial application as follows.

apP : (elP )→ (el Rn)→ (objR)
≡ λf :elP λx:(el Rn). x. . .y

ApP : Fun2 P Rn (carR)
≡ <apP, x. . .y>
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As we might expect, the x. . .y in the definition of apP is easy to fill in. To compute
the application of a polynomial f and a value x, we essentially just sum c×xi for all
elements <c, i> in the list f . The gap in the definition of ApP stands for a proof of
the proposition that apP respects polynomial equality. This is not trivial to prove.
The reader is referred to the LEGO library for the details.

Let R be a ring. We introduce the pseudo LEGO notation ‘R[X]’ which stands
for ‘el (PolyNR)’. Furthermore for f : el (R[X ]) and x : objR, we abbreviate
‘apPNR 1 (PowerR) f x’ as ‘f [x]’.

4.4.2 k-th roots in C
Before we start to work on k-th roots in C for arbitrary positive numbers k, we first
need the cubic case (k = 2). The way we formalized the real number system gives
us immediately the following result.

4.4.6. Lemma. Every positive real number has a square root. That is, there exists
a function

√
over the real numbers, such that

(i)

SqrtR axiom1 : ∀xpelR. (x ≥ 0R)→ (
√

x
2 = x)

(ii)

SqrtR axiom2 : ∀xpelR. (x ≥ 0R)→ (
√

x ≥ 0R)

Proof. Immediately by Definition 3.5.15.

We can construct the square root for complex numbers in terms of the square root
for the real numbers.

4.4.7. Definition.

sqrtC : (elC)→ (elC)
≡ λx:elC.

√
(W + a)/2 + i(sign b)

√
(W − a)/2

where a ≡ rex, b ≡ imx, W ≡
√

a2 + b2

SqrtC : C⇒C
≡ <sqrtC, x. . .y>

We extend pseudo LEGO such that we may replace ‘ap SqrtCx’ by the more read-
able ‘

√
x’. Let x : elC be a complex number. The equation y2 = x actually has

two solutions, namely
√

x and −
√

x. So we have the following key lemma.

4.4.8. Lemma.

∀x:elC.
√

x
2 = (−

√
x)2 = x

Proof. For a proof in full detail, the reader is referred to the LEGO library (Ap-
pendix A.3).

For the definition of functions like cp : (elR)→(elC), re : (elC)→(elR), and
im : (elC)→(elR), the reader is referred to the LEGO library. Also for the more
complex definition of the degree (δ) of a polynomial in a discrete ring, we refer to
the same library.

In order to be able to prove the existence of the k-th roots in C we need the
following continuity result.
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4.4.9. Lemma. Every polynomial over the real numbers of odd degree has a root.

∀P :elR[X ]. (odd (δ P ))→ ∃y:elR. P [y] = 0R

Proof. Immediatly by Definition 3.5.15.

4.4.10. Corollary.

∀x:elR∀n:elN. (oddn)→ ∃y:elR. yn = x

Proof. Given x and odd n, apply Lemma 4.4.9 with P ≡ Xn − x.

4.4.11. Theorem.

∀n:elN ∀x:elC. (n 6= 0)→ ∃y:elC. (yn = x)

Proof. Apply course of values induction on n. We distinguish two cases.
Suppose n is even. Say n = 2m. Because n 6= 0 we have that m 6= 0 and m < n.

By the induction hypothesis for m and
√

x, we obtain a y : elC such that ym =
√

x.
So yn = (

√
x)2 = x, and we are done.

For the second case, suppose n is odd. Then we have a z : elC such that |z| = 1R
and (cp |x|)z = x. By Corollary 4.4.10 we have y0 : elR such that yn0 = |x|. Again
we distinguish two cases.

Suppose x ∈ R. By Corollary 4.4.10 we have a y1 : elR such that yn1 = re z.
Set y ≡ cp y1, then yn = cp yn1 = cp (re z) = z, and we are done.

Suppose x 6∈ R. Set d ≡ √z. Then d 6∈ R. Define

P : elC[X ] ≡ i(d(X + i)n − d(X − i)n)
Q : elR[X ] ≡ reP .

We know that P = P , so P = cp (reP ) = cpQ. Because δ P = n we have that
odd (δ Q). Apply Lemma 4.4.9 to obtain a y1 : elR such that Q[y1] = 0R. Set
y2 : elC ≡ cp y1, then y2 6= i, and then

P [y2] = (cpQ)[cp y1] = cp (Q[y1]) = cp 0R = 0C .

Take y3 : elC ≡ (y2 + i)/(y2− i). Then we know that yn3 = d/d, so we have yn3 = z.
Take y : elC ≡ (cp y0)y3. Then yn = (cp yn0 )yn3 = (cp |x|)z = x, and again, we are
done.

The proof is based on the proof found in (Ebbinghaus, Hermes, Hirzebruch et al.
1990, Chapter 3, Section 3). The fully formalized proof contains a lot of equational
reasoning5.

4.4.12. Remark. Usually one makes use of the complex exponential function to
prove the preceding theorem. This leads to a considerable simpler proof. However,
the conversion of the representation of complex numbers from ordered pairs to
polar coordinates is rather nontrivial to establish. We did not wish to develop the
necessary theories like trigonometry from scratch.

5The proof found in our LEGO libraray consists of more than 400 lines of LEGO code.
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4.4.3 Fundamental theorem of algebra

So far, all our effort in formalizing mathematics was done with as ultimate goal the
formalization of the fundamental theorem of algebra. Proofs for this theorem caught
the attention of mathematicians for several centuries. Only in 1799, Gauss gave a
full proof. To prove the theorem, one needs a large base of analysis concerning the
real and complex number systems. Also a lot of algebraic concepts are involved. So
it is a good measure for the usefulness of current proof-development tools, and type
checkers in particular. Let us first formulate the theorem.

4.4.13. Theorem (The fundamental theorem of algebra). Every non-constant com-
plex polynomial has one or more zero’s in the field C.

A field K is said to be algebraically closed if every polynomial f ∈ K[X ]\K has a
zero in K. So the theorem is equivalent to the statement that the field C of complex
numbers is algebraically closed.

Historical notes

To place the fundamental theorem in a context, we make a few historical remarks
taken from (Ebbinghaus et al. 1990, Chapter 4, Section 1).

The Flemisch mathematician Albert Girard was the first to assert that there are
always n solutions. He did not give a proof, only a few examples of polynomials for
which his thesis holds.

4.4.14. Thesis (Girard, 1692). For every polynomial f ∈ R[X ] of degree n there
exists a field K, an extension of R, such that f has exactly n zeros (not necessarily
distinct) in K. The field K may perhaps be a proper overfield of C.

In a letter to Goldbach, Euler asserted in 1742 the following thesis.

4.4.15. Thesis (Fundamental theorem of algebra for real polynomials). Every poly-
nomial f ∈ R[X ] of the n-th degree has precisely n zeros in the extension field C.

In 1749 Euler gave a sketch of a proof of this thesis. The first serious attempt to
prove the fundamental theorem of algebra was done three years earlier by Jean le
Rond d’Alembert in 1746. His idea was to try to minimize the absolute value of
the polynomial f by an appropiate choice of its argument. But it was not until
1799 that Gauss gave a rigorous proof of the theorem. So far questions were raised
like what form the roots would have. Gauss’s proof did not calculate a root, but it
proved its existence. Later, Gauss gave three other proofs of the theorem, the last
one in 1849.

In (Huntington 1955, Chapter IV, Appendix II) a very syntactical proof is given
based on geometry that does not make use of trigonometry, nor of the method of
separating a complex quantity into its real and pure imaginary parts.

Our results

To formalize the Fundamental Theorem, we choose the proof found in (Ebbinghaus
et al. 1990, Chapter 3, Section 4). This proof is attractive for our purposes for
two reasons. First, it makes a clear distinction between the analytical part and
the algebraic part. Second, the proof does not make use of large theories which
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should be proven first. In fact the proof is rather syntactical and seemed to be
straightforward to formalize.

We spend considerable effort formalizing all kinds of concepts and proofs which
can be found in the LEGO library (Appendix A.3), and in the other chapters in
this thesis. Eventually, reached as far as a complete formal proof of the existence
of k-th complex roots (Theorem 4.4.11). So we did not formalize the Fundamental
Theorem in type theory. The reason for this is basicly that with current technology
it is not possible to formalize non-trivial mathematical bodies within reasonable
time. In the conclusion (Chapter 6), we will elaborate on the limitations of type
checkers. In the next chapter, we will treat one limitation in particular, namely
equation reasoning.





Chapter 5

A Two-Level Approach

This chapter is based on the paper (Barthe, Ruys and Barendregt 1996).
We present a simple and effective methodology for equational reasoning in proof

checkers. The method is based on a two-level approach distinguishing between
syntax and semantics of mathematical theories. The method is very general and
can be carried out in any type system with inductive and congruence types. The
potential of our two-level approach is illustrated by some examples developed in
LEGO.

5.1 Introduction

The main actions in writing mathematics consist of defining, reasoning and com-
puting (symbolically; this is also called ‘equational reasoning’). Whereas defining
and reasoning are reasonably well captured by an interactive proof-developer, the
formalization of computations has caused problems. This chapter studies the possi-
bilities of a partial automation of equational reasoning, which is from the authors’
experience, one of the most recurrent source of problems in formalizing mathe-
matics using a proof-developer (Barthe 1995a). We describe several methods using
elementary techniques from universal algebra which provide an efficient tool to solve
problems of an equational nature in any type theory with inductive types and term
rewriting (inductive types are required for a formalization of universal algebra, in
particular for the formalization of the type of terms of a signature).

Our main goal is to solve equational problems of the form a =A b, where A
is a model of a given equational theory S = (Σ, E), a and b are (expressions for)
elements of A, and =A is the equality relation of the carrier of A. To do so, we use
two naming principles:

for satisfiability: we recast the problem a =A b in a syntactic form [[paq]]Aα =A
[[pbq]]Aα where α is an assignment and paq and pbq are two Σ-terms such that

[[paq]]Aα = a and [[pbq]]Aα = b

where [[ ]]Aα denotes the α-interpretation of Σ-terms into the model A. (Note
that such terms always exist and one can even find optimal terms). By the
soundness theorem, the latter problem follows from S ` paq .= pbq (we use this
informal notation to state that (paq, pbq) is a theorem of S). If S is equivalent
to a canonical term rewriting system R, then the last problem can be solved

71
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automatically by taking the R-normal forms of paq and pbq and check whether
they are equal. We internalize the whole informal process using congruence
types (Barthe and Geuvers 1996); the rewrite system is grafted to the type
theory in such a way that the conversion rule itself is changed and checking
whether [paq] = [pbq] (the equality here is Leibniz equality) boils down to a
reflexivity test, which can be done by the proof checker.

for extensionality: often we need a proof object for statements of the form

s =A t ⇒ φ(s) =A φ(t) (5.1)

where s, t and φ(x) be (expressions for) elements of A. If this is done in the
way taught in books on logic (applying several times the axioms of equational
logic) a proof object for this fact becomes rather large: quadratic in the size
of the expression ‘φ’. However, using the naming principle one can solve (5.1)
by proving the meta-result

s =A t ⇒ [[pφq]]Aα (x:=s) =A [[pφq]]Aα (x:=t)

for all pφq. This result has a proof of fixed size.

In this chapter, we shall give a detailed presentation of these methods (and some
minor variants) and demonstrate with non-trivial examples that they provide a
suitable tool for a partial automation of equational reasoning in proof-checking.
The distinctive features of our approach are:

– it applies to type systems where equality is treated axiomatically (intensional
frameworks) and with proof-objects; the only requirement is the presence of
(first-order) inductive types and so-called congruence types;

– the size of the implementation of the proof-checker is kept fairly small; the
whole process can be carried out within the proof-checker;

– the proof-checker is built upon formal systems whose meta-theory is easy to
understand.

The chapter is organized as follows: in Section 5.2, we introduce the relevant math-
ematical background for the subsequent parts of the chapter. In Section 5.3, we
specify the nature of equational reasoning and delimit the range of equational prob-
lems whose resolution can be automated. In Section 5.4, we discuss the possible
approaches to the automation of equational reasoning and present our own solution
in terms of congruence types. In Section 5.5, we present a preliminary implementa-
tion of the two-level approach in LEGO. Large parts of the chapter are of expository
nature; they have been included because (i) the material we present has never been
presented elsewhere with a view to use it for our specific purpose (ii) the main
contribution of this chapter is to specify the problem and devise a methodology to
solve it (but the methodology does not use any new technique).

The work presented in this chapter bears some similarities with the work of the
NuPrl team on reflection (Constable 1993, Howe 1988), although the specific use of
naming principles to automate equational reasoning seems to be new.

5.2 Mathematical Background

In this section, we review some standard material on equational logic and term
rewriting. During the last few years, there has been an explosion in the number
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of variants of equational logic: many-sorted, order-sorted, conditional. . . We shall
only be concerned with the simplest formalism, unsorted equational logic. For
convenience, we separate the presentation in two parts; the first part is concerned
with syntax, equational deduction and term rewriting. The second part is devoted
to semantics. See (Cohn 1981, Klop 1992) for a longer introduction to the notions
involved.

5.2.1 Equational Logic and Term Rewriting

The basic notions of universal algebra are those of signature and equational theory.
As the notions are standard, we give them without any further comment.

5.2.1. Definition. (i) A signature is a pair Σ = (FΣ, Ar) where FΣ is a set of
function symbols and Ar : FΣ → N is the arity map.

(ii) Let Σ be a signature. Let V be a fixed, countably infinite set of variables. The
set TΣ of Σ-terms is defined as follows:

– if x ∈ V , then x ∈ TΣ,

– if f ∈ FΣ and t1, . . . , tArf ∈ TΣ, then f(t1, . . . , tArf ) ∈ TΣ.

(iii) A map θ : TΣ → TΣ is a Σ-substitution if for every f ∈ FΣ and Σ-terms
t1, . . . , tArf we have θ(f(t1, . . . , tArf )) = f(θt1, . . . , θtArf ).

(iv) The relation ≤ is defined by t, t′ ∈ TΣ, t ≤ t′ if there exists θ such that θt = t′.
The pre-order induced by ≤ is denoted by T≤Σ .

(v) The set var(s) of variables of a term s is defined inductively as follows:

– if x ∈ V , then var(x) = {x},
– var(f(t1, . . . , tArf )) =

⋃
1≤i≤n var(ti).

(vi) if s and t are Σ-terms and u is an occurrence of s, s[u← t] is the term obtained
by replacing the sub term of s at u by t.

Note that every (partial) map θ : V → TΣ yields a Σ-substitution in an obvious
way. We shall sometimes refer to such maps as partial substitutions. The standard
terminology can be carried over to partial substitutions, so we will also talk about
partial renamings.

Equational Logic. A Σ-equation is a pair of Σ-terms (s, t), usually written as
s

.= t.

5.2.2. Definition. An equational theory is a pair S = (Σ, E) where Σ is a signa-
ture and E is a set of Σ-equations.

The rules for equational deduction are given in the following table:
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Rules for equational deduction

s
.= s Reflexivity

s
.= t

t
.= s

Symmetry

s
.= t t

.= u

s
.= u

Transitivity

s1
.= t1 . . . sn

.= tn
f(s1, . . . , sn)

.= f(t1, . . . tn)
Compatibility

s
.= t

θs
.= θt

Instantiation

where θ is a substitution.

5.2.3. Definition. Let S = (Σ, E) be an equational theory. A Σ-equation s
.= t

is a theorem of S (written S ` s
.= t) if it is deducible from E using the rules for

equational deduction.

Term Rewriting. Let Σ be a signature.

5.2.4. Definition. A Σ-rewrite rule is a pair of Σ-terms (s, t), usually written
s → t, such that s is a non-variable term and var(t) ⊆ var(s). A Σ-rewrite system
is a set of rewrite rules.

As usual, we talk about rewrite rules and rewrite systems when there is no risk
of confusion. Note that every Σ-rewrite system R induces an equational theory
(Σ,R), simply by seeing rewrite rules as equations. By abus de notation, we shall
denote this equational theory by R.

Let R be a rewrite system and s and t be two Σ-terms. We say that s one step
R-rewrites to t (notation s→R t) if there exist an occurrence u of s, a rewrite rule
(l, r) in R and a Σ-substitution θ satisfying s/u = θl and t = s[u← θr].

We let �R and ↔R be respectively the reflexive transitive and the reflexive,
symmetric and transitive closure of →R. Finally, s ↓R t if there exists u such that
s�R u and t�R u. Note that ↓R ⊆ ↔R.

5.2.5. Definition. A rewrite system R is confluent if ↓R = ↔R and terminating
if there is no infinite reduction sequence t→R t1 →R t2 →R · · ·. A rewrite system
is canonical if it is both confluent and terminating.

5.2.6. Proposition. Let R be a confluent rewrite system.

(s ↓R t) ⇔ (s↔R t) ⇔ R ` s
.= t .

5.2.7. Remark. Algebraic structures are usually described equationally rather than
as term rewriting systems. However, some of them can be turned into term rewriting
systems using the Knuth-Bendix completion procedures (Klop 1992).
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5.2.2 The Semantics of Equational Logic and the Complete-

ness Theorem

Equational theories are syntactical descriptions of mathematical objects. The ob-
jects satisfying these descriptions are the mathematical structures themselves. In
this section, we define a semantics for equational theories. As we are interested in
using universal algebra to solve the problem of equational reasoning in type theory,
our semantics is ultra-loose, i.e. the equality relation between terms is interpreted
as an arbitrary equivalence relation rather than as the underlying equality of the
model.

5.2.8. Definition. An Σ-algebra A for a signature Σ consists of a set A, an equiv-
alence relation =A on A and for each function symbol f of arity n, a function
fA : An → A such that for every (a1, . . . , an), (a′1, . . . , a

′
n) ∈ An,

a1 =A a′1, . . . , an =A a′n ⇒ fA(a1, . . . , an) =A fA(a′1, . . . , a
′
n) .

For implementation purposes, we use a slightly modified definition of assignment
and satisfiability. Of course, the resulting semantics is equivalent to the standard
one.

5.2.9. Definition. An A-assignment is a partial map α : V ⇀ A with a non-
empty, finite domain.

Any A-assignment can be extended inductively to a partial function [[ ]]Aα on the set
of Σ-terms:

[[x]]Aα ' αx if x ∈ dom α

[[f(t1, . . . , tn)]]
A
α ' fA([[t1]]

A
α , . . . , [[tn]]

A
α ) .

5.2.10. Definition. Let A be a Σ-algebra. Two A-assignments α and β are com-
patible if dom α = dom β and αx =A βx for all x ∈ dom α.

The following lemma shows that compatible assignments model the same equations.

5.2.11. Lemma (Compatibility lemma). Let A be a Σ-algebra. Let α and β be two
compatible A-assignments. Let t be a Σ-term such that var(t) ⊆ dom α. Then
[[t]]Aα =A [[t]]Aβ .

We write A |= s
.= t if for all A-assignments α such that var(s)∪var(t) ⊆ dom α,

[[s]]Aα =A [[t]]Aα .

5.2.12. Definition. Let S = (Σ, E) be an equational theory. A Σ-algebra A is a
S-model if A |= s

.= t for all the equations s
.= t in E.

We say that S = (Σ, E) semantically entails a Σ-equation s
.= t (notation S |= s

.= t)
if A |= s

.= t for every S-model A. The fundamental theorem of equational logic
establishes the compatibility between syntax and semantics.

5.2.13. Theorem (Soundness/Completeness). For every Σ-equation s
.= t,

S ` s
.= t ⇔ S |= s

.= t .
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The completeness result is proved by constructing the term model TS as the quotient
of TΣ by the provability relation ∼S . The crucial fact that we shall exploit later is
that for every term s and t,

S ` s
.= t ⇔ [s] = [t]

where [ ] : TΣ → TS is the canonical map assigning to every term its equivalence
class under the provability relation.

5.3 The Naming Principles

In this section, we define a methodology to solve equational problems in type theory.
Our methodology is very flexible and can be carried out in any type system with
inductive types. In particular, it can be carried out in the underlying type systems
of LEGO (Luo and Pollack 1992), Coq (Dowek et al. 1993), Alf (Magnusson and
Nordström 1994) and NuPrl (Constable et al. 1986).

5.3.1 Specifying the Problem to be Solved

Our first task is to fix the boundaries of the problem to be solved. In its most general
form, equational reasoning is concerned with determining whether two elements s

and t of a set V of values are related by an equality relation R. Naturally, the prob-
lem is far too general to have an automated solution. Yet there is a well-understood
branch of mathematical logic, namely equational logic, which is concerned with
equational theories, i.e. first-order languages with a single (binary) predicate sym-
bol =. Equational logic provides the right level of generality to tackle the problem
of equational reasoning for several reasons:

1. the problem is general enough: a wide collection of mathematical theories can
be presented equationally, for example the theories of monoids, groups and
rings;

2. one might expect a useful and automated solution to the problem: in some
cases, it is possible to provide an algorithm to test whether an equation of a
given theory S is a theorem of this theory;

3. this work can provide a theoretical foundation to integrate computer algebra
systems and proof checkers: computer algebra systems, with their impressive
power, are mostly concerned with equational theories.

This justifies the following choice for the form of an equational problem.

The problem. Let S be an equational theory. Let A be a model of S. Let a and b

be expressions for elements of A. Does a =A b?

Note that the problem makes sense within a type system with inductive types as
one can formalize all basic notions of universal algebra in such a system. Here are
a few examples of equational problems.

5.3.1. Examples. – Let Zn be the ring of integers modulo n, where n ≥ 3.
Does 2(n− 1) = 0?

– Let D8 be the dihedral group with eight elements. Let σ, τ ∈ D8. Does
τσ = σ3τ? Here the problem is quantified over all elements of D8.
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– Let (M, =M , ◦M , eM ) be a monoid. Let x, y ∈ M . Does (x ◦M e) ◦M y =M

x ◦M y? Here the problem is quantified over all x, y ∈M and monoids M .

To solve the problem, we will first relate it to equational logic and then use equa-
tional logic to solve the problem automatically.

For the remainder of this section, we work with the formalization of universal
algebra in the type system. In particular, an equational theory is an inhabitant of
the type of equational theories, and a model of a theory is an inhabitant of the type
of models of this theory. To alleviate the presentation, we will still use the ordinary
language of universal algebra.

In the sequel, we let S = (Σ, E) be a fixed equational theory and A be a model
of S.

5.3.2 Equational Logic, Local Equational Logic and Equa-

tional Reasoning

Equational logic is global in the sense that it is used to determine whether a S-
equation s

.= t is true in all models of S, i.e. whether S |= s
.= t. In contrast,

equational reasoning is local, in the sense that one is also interested whether a given
equality holds in a specific model, i.e. a =A b for some specific a and b in a specific
model A of S. An intermediate formal system is local equational logic, a variant of
equational logic whose deductive system allows to infer whether A |= s

.= t for a
specific model A of S. One could even go one step further and develop a formal
system to infer whether [[s]]Aα =A [[t]]Aα in a specific model A and for a specific
assignment α. This last problem, which we call the local satisfiability problem is in
fact a special instance of equational reasoning. If we analyze the logical formulations
of local satisfiability and semantical entailment, we see that the latter represents a
uniform notion of the former1. One concludes that the goal of equational logic is to
know whether a uniform collection of equational problems is satisfied.

Local satisfiability is a very common form of equational problem. However, not
all equational problems arising in the formalization of mathematics are concerned
with local satisfiability. An equally important instance of equational problem is the
extensionality problem: given a S-term t, a model A of S and two interpretations
α, β in A, does [[t]]Aα =A [[t]]Aβ ? In fact, those two problems (local satisfiability and
extensionality) form the core of equational reasoning.

5.3.3 The Naming Principles

As outlined in the previous subsection, there is a divergence between equational
logic as a formal system and equational reasoning as it occurs in mathematics. We
have

a goal: an equational problem, i.e. an equality a =A b;

some tools: equational logic, which can be used to solve a local satisfiability prob-
lem, and the compatibility lemma, which can be used to solve an extensionality
problem.

1By the soundness/completeness theorem, S |= s
.
= t is equivalent to the collection of local

satisfiability problems ([[s]]Aα =A [[t]]Aα )(A∈M,α∈V(A) where M is the collection of S-models and

for A ∈M, V(A) is the set of A-assignments.
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The difficulty in applying the tools to solve the goal is that equational problems
are essentially of a semantical nature while equational logic is designed to solve
syntactical problems. In order to apply equational logic to equational reasoning,
one must perform a preliminary manipulation on equational problems, so that they
present themselves in a form which is amenable to be solved by equational logic.
What is needed here is a naming principle which transforms a semantical equational
problem into a local satisfiability problem or an extensionality problem. For the
clarity of the discussion, we will therefore distinguish between the naming principle
for satisfiability (for short NPS) and the naming principle for extensionality (for
short NPE). One fundamental feature of these naming principles is that they do
not require any extension of the type system; indeed, the naming principles are a
special instance of conversion rules. We introduce these principles below.

The Naming Principle for Satisfiability.

The aim of the naming principle for satisfiability is to recast a local equation a =A b

into an equation of the form [[s]]Aα =A [[t]]Aα , where

– s and t are terms of the theory T ,

– α is an assignment,

– [[s]]Aα � a,

– [[t]]Aα � b.

Of course, the equation to be solved has not changed; what has changed is the way
to look at it. The equation in its second form makes it clear that the problem to
be solved is an instance of a uniform collection of equational problems, as defined
in the previous section. The advantage of this switch of perspective is that the
equation in its second form is more amenable to be solved by standard syntactic
tools. Indeed, [[s]]Aα =A [[t]]Aα is an immediate consequence of S ` s

.= t. This yields
a semi-complete2 method to prove a =A b:

1. apply the NPS; this reduces the equational problem to one of the form [[s]]Aα =A
[[t]]Aα ;

2. apply any method available to prove S ` s
.= t.

Of course, the efficiency of the method depends on the choice of s and t3. Fortu-
nately, there is always an optimal application of the NPS.

5.3.2. Definition. Let A be a model of S. Let a be an element of A. The pre-
order of codes of a is the sub-pre-order of T≤Σ whose elements are the terms t for
which there exists an assignment α such that [[t]]Aα � a.

For every element a of A, the pre-order of codes of a has a top element (unique
up to renaming), called the optimal code of a. We write paq for the optimal code
of a.

Similarly, we can define a code for an equational problem a =A b to be an
equation s

.= t such that for some assignment α, [[s]]Aα � a and [[t]]Aβ � b. Every

2The method can fail even if the equational problem is true.
3Indeed, some uses of the NPS can be less than judicious. Every equational problem a =A b

can be reduced by the NPS to [[s]]Aα =A [[t]]Aα where s and t are distinct variables and α is any

assignment satisfying αs = a and αt = b. In order to solve the problem according to the proposed

method, we must now solve S ` s .
= t. This only holds if the theory is inconsistent!
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equational problem a =A b has an optimal code paq .= pbq (one can verify that paq
and pbq are optimal codes for a and b respectively) with the two properties:

– paq .= pbq is a code for a =A b;

– S ` paq .= pbq if and only if S ` s
.= t for some code s

.= t of a =A b.

The conclusion is that one can define an algorithm which performs the optimal
choice for the NPS. In the sequel, it is understood that the NPS is always applied
for such an optimal choice.

The Naming Principle for Extensionality.

The aim of the naming principle for extensionality is to recast a local equation
a =A b into an equation [[t]]Aα =A [[t]]Aβ , where

– t is a term of the theory T ,

– α and β are assignments,

– [[t]]Aα � a,

– [[t]]Aβ � b.

In the second form, the equation can be immediately deduced from αx =A βx for
all x ∈ var(t). As for the NPS, the method is only semi-complete. Yet it is a very
important tool for formal proof development. Indeed, the standard representation
of sets in most type systems uses the so-called setoids; consequently all the reasoning
takes place with book equalities and extensionality matters do come up very often.
As for the NPS, the NPE can be applied optimally. Indeed, one can find for every
equational problem a =A b a term t (the optimal code for NPE) such that

– there exist two assignments α and β such that [[t]]Aα � a and [[t]]Aβ � b;

– for every term t′ and assignments δ and γ such that [[t′]]Aδ � a and [[t′]]Aγ � b,
there exists a substitution θ such that θt′ � t.

Note that it is possible to extend the naming principle for extensionality to formulae.

Combining Both Principles.

In the previous subsections, we have considered two different naming principles
which can be used to solve equational problems. However, the method that we have
described disregards the possibility of using assumptions present in the context. In
fact, the NPS is too weak to be useful in this more general case. For example, if
one has to prove in a monoid M that

(a ◦ b) ◦ c =A a′ ◦ (b ◦ c) (5.2)

for some elements a, a′, b and c of M such that a =A a′, the NPS reduces the
problem to

[[(x · y) · z]]Aγ =A [[x′ · (y · z)]]Aγ (5.3)

for a suitable assignment γ. Moreover, one cannot invoke the NPE principle to
reduce equation (5.3) further. However, one can combine the NPS and the NPE to
obtain a powerful naming principle (NPSE) which can be used to solve equational
problems in a context. This new principle takes as input an equational problem
a =A b and returns as output an equation [[s]]Aα = [[t]]Aβ where s and t are two terms
s and t and α and β are two assignments such that
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– [[s]]Aα � a,

– [[t]]Aβ � b,

– dom α = dom β and αx = βx for every x ∈ dom α.

As for the NPS, the equation follows from S ` s
.= t. With this new principle,

equation (5.2) can be reduced to [[(x · y) · z]]Aα =A [[x · (y · z)]]Aβ and αx = βx for
suitable α and β. This shows that the NPSE is stronger than the combination of
the NPS and the NPE. However, it is difficult to find an optimal use of the NPSE for
obvious reasons. Fortunately, one can recover the power of the NPSE from the NPS
by grafting a simple procedure on top of the NPE. The procedure, called collapsing
procedure (or CP for short),

– takes as input a problem of the form [[s]]Aα = [[t]]Aα and two variables x and y in
the domain of α,

– returns as output the problems [[s[y/x]]]Aα = [[t[y/x]]]Aα and αx = αy.

The benefits of the CP are similar to those of the NPSE. For example, the CP can
be called to reduce equation (5.3) into the two problems

[[(x · y) · z]]Aγ =A [[x · (y · z)]]Aγ
γx =A γx′ .

The CP provides an easy means to make use of the optimal naming of an equa-
tional problem via the NPS. Unfortunately, there does not seem to be any obvious
counterpart for making use of the optimal naming of an equational problem via the
NPE4.

5.4 Congruence Types

5.4.1 How to Automate Equational Reasoning?

As mentioned earlier, the naming principles do not solve equational problems. A
naming principle is a special kind of conversion rule which recasts an equational
problem into a specific form. Here these specific forms are local satisfiability and
extensionality problems. The point is the naming principles make apparent terms
of an equational theory. In the special case where we look at a local satisfiabil-
ity problem, the equational problem will become of the form [[s]]Aα =A [[t]]Aα . By
the soundness/completeness theorem, the equality is a consequence of S ` s

.= t.
Reducing an equational problem to a problem of the form S ` s

.= t is useful be-
cause we dispose of techniques to determine whether an equation is in the deductive
closure of an equational theory:

using computer algebra systems. Current computer algebra systems are excellent at
equational reasoning. They have various clever algorithms to compute all kinds
of equations at a symbolic (syntactical) level. We could use such a system to
compute s

.= t and, if this succeeds, we let our proof checker assume the
statement as an axiom. This is what we call the external believing way.

4Consider a monoid H and three elements a, b, c of H such that a ◦ b =H a′ ◦ b′. The optimal

use of the NPE on

(a ◦ b) ◦ c =H (a′ ◦ b′) ◦ c
will yield the two subproblems a =H a′ and b =H b′. Indeed, the NPE will be applied with

(x ◦ y) ◦ z as code whereas it would have been better to take x ◦ y as code.
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using term rewriting. Another technique to check S ` s
.= t is of course term rewrit-

ing: if S can be completed into a confluent and terminating term rewriting
systemR, we can look at the normal form of s and t with respect to the comple-
tion of S. For such theories, equational reasoning can be partially automated
by using the naming principle and importing in some way term rewriting into
the type theory as done for example in (Breazu-Tannen 1988). We call this
method the internal believing way, because the problem is solved without any
outside help. This is the method proposed in this chapter.

the autarkic way. We might want to define a map nf which assigns to every term its
normal form in R and to show that for every term t and assignment α, we have
[[t]]Aα =βι [[nf t]]Aα . In order to check s

.= t, we just have to verify (nf s) = (nf t),
where = denotes Leibniz equality. This comes down to a reflexivity test. This
method is called the autarkic way because it does not involve any change to
the type theory or the proof-checker. It must be said that this method seems
currently too inefficient to be used in practice.

Most proposals in the literature opt for the external believing approach (Ballarins,
Homann and Calmet 1995, Harrison and Théry 1993, Jackson 1994). Indeed, the
external believing way has an obvious advantage: hybrid systems offer a shortcut
to integrate term rewriting in proof checking. However, the approach has two
disadvantages:

– proof checkers are based on well-understood languages whose logical and com-
putational status are well understood. It is not always the case for computer
algebra systems.

– proof checkers generate from scripts proof-objects; if the computer algebra sys-
tem is used as an congruence, then all calculations performed by the computer
algebra system have to be taken as axioms by the proof checker. Such a process
threatens the reliability of the hybrid system5.

One can remedy to these two problems by using the computer algebra system not
as an congruence but as a guide, as done in (Harrison and Théry 1993). In this case,
the answer of the computer algebra system is used to solve an equation. We call
this method the skeptic way because the proof-checker does not trust the computer
algebra system. This technique is superior over the external believing one in that
it eliminates the holes in the proof-terms. Moreover, the problem of the reliability
of the computer algebra system is circumvented. However the skeptic way seems
infeasible in a proof-checker such as LEGO because of the absence of tactics.

5.4.2 The Internal Believing Approach via Congruence Types

In this section, we introduce congruence types. The formalism, which is based
on algebraic, inductive and quotient types, is well-suited for the introduction of
canonical term rewriting systems. We refer the reader to (Barthe and Geuvers
1996) for a general scheme for congruence types and focus on a specific example of
congruence type used to solve equational problems for groups. It consists of two
types:

5Sometimes the user has to make sure that the necessary side conditions are satisfied. For

example, several computer algebra systems will state that (
√
x)2 equals x, without bothering

about the condition that x ≥ 0.
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– an inductive type G corresponding to the set of terms of the signature of
groups,

– the quotient G of G by the deductive closure of the theory of groups; G is
defined as an algebraic type, i.e. equality between inhabitants of G is forced
by the rewrite rules.

Both types are related by a map [ ] : G→ G which assigns to every term its equiva-
lence class under the provability relation. There is an axiom to reflect the universal
property of quotients as it is used in the completeness theorem: an equation s

.= t

holds in every group if [s] = [t]. If we work in ECC (Luo 1994), the rules are:

` G : �0 ` e : G ` i : G→ G ` o : G→ G→ G

` G : �0 ` e : G ` i : G→ G ` o : G→ G→ G

` a : N → G ` a : N → G
Γ ` b : G

Γ ` [b] : G

Γ ` p : [a] = [b]

Γ ` noconf p : a =G b

Γ ` fe : C Γ ` fi : G→ C → C

Γ ` C : �0 Γ ` fa : N → C Γ ` fo : G→ G→ C → C → C

εC [fa, fe, fi, fo] : G→ C

Γ ` a : A Γ ` B : s

Γ ` a : B
if A→βχιρ B or B →βχιρ A

where =G is the (impredicatively defined) deductive closure of the theory of
groups, [ ] is a new constructor and N are the inductively defined natural numbers.
The computational content of the system is given by β-reduction and the following
reduction relations:

– ι-reduction; let ~f = (fa, fe, fi, fo). The rules are

εC [~f ] (a i) →ι fa i

εC [~f ] e →ι fe

εC [~f ] (i x) →ι fi x (εC [~f ] x)

εC [~f ] (o x y) →ι fo x y (εC [~f ] x) (εC [~f ] y)

– ρ-reduction; the rules correspond to the Knuth-Bendix completion of the ax-
ioms of groups:

o e x →ρ x

o x e →ρ x

o x (o y z) →ρ o (o x y) z

o (i x) x →ρ e

o x (i x) →ρ e

i e →ρ e

o (o x (i y)) y →ρ x

o (o x y) (i y) →ρ x

i (i x) →ρ x

i (o x y) →ρ o (i y) (i x)

– χ-reduction; for every x, y : G,

[o x y] →χ o [x] [y]

[i x] →χ i [x]

[e] →χ e
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5.5 Formalization in LEGO

Type theory based proof checkers such as Alf, Coq and LEGO are expressive enough
for the two-level approach described above to be developed within the system itself.
We present an implementation of the two-level approach in LEGO. The reason to
choose LEGO is that it allows for the user to input its own rewrite rules, thus
offering the possibility to implement congruence types.

5.5.1 Formalization of Equational Logic

Formalizing equational logic in LEGO is relatively easy. There are no major diffi-
culties in developing the whole theory along the lines of Section 5.2.

Equations are defined as pairs of terms and equational theories as signatures
together with a predicate over the type of equations. One can even formalize the
deductive closure of a set of equations by formalizing first the notion of simulta-
neous substitution. It is equally easy to define the semantics of equational logic.
The definitions of algebra, assignment, satisfaction and model are immediate adap-
tations of the definitions introduced in Section 5.2. See Section 3.4 for a detailed
presentation of our implementation of universal algebra in LEGO.

5.5.2 Formalization of the Naming Principles

LEGO does not offer support for the naming and extensionality principles6. Yet
they are special instances of conversion rules, so they can be performed manually
using the Equiv command. We present three examples, one using the NPE, a second
using the CP and the third one using the NPS. These examples are meant to give
an idea of the method used. To understand them fully, the reader should read first
Section 5.6. In each case, the proofs turn out to be remarkably short. Note that in
our implementation we did not use (nor need) specifications of equational theories.

First, we give an example where the NPE is used to solve an equational problem.
Here G is an algebra for the signature of groups, obj G is an element of its carrier,
times is the multiplication on G and inv is the inverse on G. TIMES and INV are
function symbols of the signature of groups. int is the interpretation function
which, given an assignment rho, assigns a symbol of the signature to an element
of G whose set of variables is contained in the domain of rho. Note that [x:A]b

stands for λx:A.b, {x:A}B for Πx:A.B, <x:A>B for Σx:A.B, Set stands for the type
of setoids, Eq for the equality of a Set, el for the elements of a Set, obj for the
elements of a model and Q is Leibniz equality.

Lego> Goal {x,y,z:obj G} (Eq x y) ->

(Eq (times (inv x) z) (times (inv y) z));

Goal

?0 : {x,y,z:obj G}(Eq x y)->Eq (times (inv x) z) (times (inv y) z)

Lego> intros;

intros (4)

x : obj G

y : obj G

z : obj G

H : Eq x y

6An extension of the LEGO system is proposed in (Barthe and Elbers 1996) to solve this

problem.
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?1 : Eq (times (inv x) z) (times (inv y) z)

Lego> rho == necons x (necons y (base z));

defn rho = necons x (necons y (base z))

rho : nelist (obj G)

Lego> t == TIMES (INV (VAR ZeroN)) (VAR TwoN);

defn t = TIMES (INV (VAR ZeroN)) (VAR TwoN)

t : termGr

Lego> u == TIMES (INV (VAR OneN)) (VAR TwoN);

defn u = TIMES (INV (VAR OneN)) (VAR TwoN)

u : termGr

Lego> Equiv Eq (int G rho t) (int G rho u);

Equiv

?2 : Eq (int G rho t) (int G rho u)

Lego> Refine SubstitutionLemma G ZeroN;

Refine by SubstitutionLemma G ZeroN

?9 : Eq (int G rho (TFV sig ZeroN)) (int G rho (VAR OneN))

Lego> Refine H;

Refine by H

Discharge.. rho H z y x

*** QED ***

Note that the NPE yields the goal ?2. The SubstitutionLemma is used to obtain
?9 is a specific instance of the compatibility lemma. The next example uses the
CP procedure. Here we are working in a context in which times assoc states that
times is associative. The CP procedure is called by the term CP.

Lego> Goal {a,b,b’,c:obj G} (Eq b b’) ->

Eq (times a (times b c)) (times (times a b’) c);

Goal

?0 : {a,b,b’,c:obj G} (Eq b b’) ->

(Eq (times a (times b c)) (times (times a b’) c)

Lego> intros;

intros (5)

a : obj G

b : obj G

b’ : obj G

c : obj G

H : Eq b b’

?1 :Eq (times a (times b c)) (times (times a b’) c)

Lego> rho == necons a (necons b (necons b’ (base c)));

defn rho = necons a (necons b (necons b’ (base c)))

rho : nelist (obj G)

Lego> t == TIMES (VAR ZeroN) (TIMES (VAR OneN) (VAR ThreeN));

defn t = TIMES (VAR ZeroN) (TIMES (VAR OneN) (VAR ThreeN))

t : termGr

Lego> u == TIMES (TIMES (VAR ZeroN) (VAR TwoN)) (VAR ThreeN);

defn u = TIMES (TIMES (VAR ZeroN) (VAR TwoN)) (VAR ThreeN)

u : termGr

Lego> Equiv Eq (int G rho t) (int G rho u);

Equiv

?1 : Eq (int G rho u) (int G rho u)

Lego> Refine CP G OneN (VAR TwoN);

Refine by CP G OneN (VAR TwoN)

?9 : Eq (int G rho (TFV sig OneN)) (int G rho (VAR TwoN))
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?10 : Eq (int G rho (Subst t OneN (VAR TwoN)))

(int G rho (Subst u OneN (VAR TwoN)))

Lego> Refine H;

Refine by H

?10 : ...

Lego> Refine times_assoc;

Refine by times_assoc

Discharge.. rho H c b’ b a

*** QED ***

The final example uses the NPS. Congruence types are used to give a short proof
of an equality on groups. In the sequel, Q refl is a proof of the reflexivity of Leibniz
equality, comm and conj respectively denote the commutator and the conjugate of
two elements. For comparison, we have included a traditional proof of this fact in
Section 5.6.

Goal {x,y,z:obj G} Eq (conj (comm x y) z) (comm (conj x z) (conj y z));

intros;

rho == necons x (necons y (base z));

t == CONJ (COMM (VAR ZeroN) (VAR OneN)) (VAR TwoN);

u == COMM (CONJ (VAR ZeroN) (VAR TwoN)) (CONJ (VAR OneN) (VAR TwoN));

Equiv Eq (int G rho t) (int G rho u);

Refine Soundness;

Refine Q_refl;

Save comm_conj;

5.6 Examples

This section contains examples of equational problems solved using our approach.
To keep the presentation simple, we introduce the group axioms without using an
equational theory. Note that because of the two-level approach, the number of
LEGO commands of the proof comm conj is very small (in essence only four). This
in contrast to the traditional proof comm conj hand. Because of a lot of applications
of the transitivity of equality and the group axioms, the proof explodes up to a few
pages of LEGO commands.

Module Examples Import syntax semantics;

(* Define the signature and the terms of a Group. *)

[sigGr : Signature = ...]

[termGr : SET = term sigGr]

[VAR : nat -> termGr = TFV sigGr]

[ONE : termGr = ...]

[INV : termGr -> termGr = ...]

[TIMES : termGr-> termGr -> termGr = ...];

[DIV : termGr-> termGr -> termGr = ...];

(* Let G be a group, satisfying the group axioms. *)

[G : Algebra sigGr];
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[One : el (car G) = ...]

[Inv : Fun (car G) (car G) = ...]

[Times : Fun2 (car G) (car G) (car G) = ...]

[one : obj G = ...]

[inv : (obj G) -> (obj G) = ...]

[times : (obj G) -> (obj G) -> (obj G) = ...];

[One_ident : Identity Times One ]

[Inv_invers : Inverse Times One Inv]

[Times_assoc : Associative Times ];

(* Show y = z -> z ((x/y) y) = z ((x/z) z) *)

Goal {x,y,z:obj G} (Eq y z) -> Eq (times (times y (times x (inv y))) z)

(times (times z (times x (inv z))) z);

intros;

rho == necons x (necons y (base z));

t == TIMES (TIMES (VAR OneN) (DIV (VAR ZeroN) (VAR OneN))) (VAR TwoN);

u == TIMES (TIMES (VAR TwoN) (DIV (VAR ZeroN) (VAR TwoN))) (VAR TwoN);

Equiv Eq (int G rho t) (int G rho u);

Refine SubstitutionLemma G OneN;

Refine H;

Save Example_1;

(* Show b = b’ -> a (b c) = (a b’) c *)

Goal {a,b,c,d:obj G} (Eq b d) -> Eq (times a (times b c))

(times (times a d) c);

intros;

rho == necons a (necons b (necons c (base d)));

t == TIMES (VAR ZeroN) (TIMES (VAR OneN) (VAR TwoN));

u == TIMES (TIMES (VAR ZeroN) (VAR ThreeN)) (VAR TwoN);

Equiv Eq (int G rho t) (int G rho u);

Refine CP G OneN (VAR TwoN);

Refine H;

Refine Times_assoc;

Save Example_2;

(* =====================================================================

Use Oracle Types to implement term rewriting. *)

[FreeGroup : SET];

[varFg : nat -> FreeGroup];

[oneFg : FreeGroup];

[invFg : FreeGroup -> FreeGroup];

[timesFg : FreeGroup -> FreeGroup -> FreeGroup];

(* Define the Knuth-Bendix completion of the group equations. *)

[ [x,y,z : FreeGroup]

timesFg oneFg x ==> x
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|| timesFg x oneFg ==> x

|| timesFg (invFg x) x ==> oneFg

|| timesFg x (invFg x) ==> oneFg

|| invFg oneFg ==> oneFg

|| timesFg (timesFg x (invFg z)) z ==> x

|| timesFg (timesFg x y) (invFg y) ==> x

|| timesFg x (timesFg y z) ==> timesFg (timesFg x y) z

|| invFg (invFg z) ==> z

|| invFg (timesFg z y) ==> timesFg (invFg y) (invFg z)

];

[class : termGr -> FreeGroup = ...];

[Soundness : {s,t:termGr} {rho:el (Assignment G)}

(Q (class s) (class t)) -> Eq (int G rho s) (int G rho t)];

(* The conjugate of a commutator equals the commutator of the conjugate.

Define the commutator [x,y] == (x y)/(y x)

and the conjugate x*y == y (x/y) *)

[comm [x,y : obj G] : obj G = times (times x y) (inv (times y x))]

[COMM [x,y : termGr] : termGr = DIV (TIMES x y) (TIMES y x)]

[conj [x,y : obj G] : obj G = times y (times x (inv y))]

[CONJ [x,y : termGr] : termGr = TIMES y (TIMES x (INV y))];

(* Show [x,y]*z = [x*z,y*z] using the two-level approach. *)

Goal {x,y,z:obj G} Eq (conj (comm x y) z) (comm (conj x z) (conj y z));

intros;

rho == necons x (necons y (base z));

t == CONJ (COMM (VAR OneN) (VAR OneN)) (VAR TwoN);

u == COMM (CONJ (VAR OneN) (VAR TwoN)) (CONJ (VAR OneN) (VAR TwoN));

Equiv Eq (int G rho t) (int G rho u);

Refine Soundness;

Refine Q_refl;

Save comm_conj;

(* Proof the last lemma again on the traditional way.

First show x^{-1}^{-1} = x. *)

Goal Involutive Inv;

Intros x;

Refine Eq_trans (times one (inv (inv x)));

Refine Eq_sym; Refine fst One_ident;

Refine Eq_trans (times (times x (inv x)) (inv (inv x)));

Refine exten2 Times ??.Eq_refl;Refine Eq_sym; Refine snd Inv_invers;

Refine Eq_trans (times x (times (inv x) (inv (inv x))));

Refine Eq_sym; Refine Times_assoc;

Refine Eq_trans (times x one);

Refine exten2 Times ?.Eq_refl; Refine snd Inv_invers;

Refine snd One_ident;

Save Inv_invol;
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(* Show (x y)^{-1} = y^{-1} x^{-1} *)

Goal {x,y:obj G} Eq (inv (times x y)) (times (inv y) (inv x));

intros;

Refine Eq_sym;

Refine Eq_trans (times (times (inv y) (inv x)) one);

Refine Eq_sym; Refine snd One_ident;

Refine Eq_trans (times (times (inv y) (inv x))

(times (times x y) (inv (times x y))));

Refine exten2 Times ?.Eq_refl; Refine Eq_sym; Refine snd Inv_invers;

Refine Eq_trans (times (times (times (inv y) (inv x)) (times x y))

(inv (times x y)));

Refine Times_assoc;

Refine Eq_trans (times one (inv (times x y)));

Refine +1 fst One_ident;

Refine exten2 ? ? ?.Eq_refl;

Refine Eq_trans (times (inv y) (times (inv x) (times x y)));

Refine Eq_sym; Refine Times_assoc;

Refine Eq_trans (times (inv y) y);

Refine +1 fst Inv_invers;

Refine exten2 Times ?.Eq_refl;

Refine Eq_trans (times (times (inv x) x) y);

Refine Times_assoc;

Refine Eq_trans (times one y);

Refine exten2 Times ? ?.Eq_refl; Refine fst Inv_invers;

Refine fst One_ident;

Save Times_Inv;

(* Show (x*z)(y*z) = (x y)*z *)

Goal {x,y,z:obj G}Eq (times (conj x z) (conj y z)) (conj (times x y) z);

intros;

Refine Eq_trans (times z (times (times x (inv z)) (conj y z)));

Refine Eq_sym; Refine Times_assoc;

Refine exten2 Times ?.Eq_refl;

Refine Eq_trans (times x (times (inv z) (conj y z)));

Refine Eq_sym; Refine Times_assoc;

Refine Eq_trans (times x (times y (inv z)));

Refine +1 Times_assoc;

Refine exten2 Times ?.Eq_refl;

Refine Eq_trans (times (times (inv z) z) (times y (inv z)));

Refine Times_assoc;

Refine Eq_trans (times one (times y (inv z)));

Refine +1 fst One_ident;

Refine exten2 Times ? ?.Eq_refl;

Refine fst Inv_invers;

Save Times_Conj;

(* Show (x*y)^{-1} = x^{-1}*y *)

Goal {x,y:obj G} Eq (inv (conj x y)) (conj (inv x) y);

intros;

Refine Eq_trans (times (inv (times x (inv y))) (inv y));
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Refine Times_Inv;

Refine Eq_trans (times (times y (inv x)) (inv y));

Refine +1 Eq_sym; Refine +1 Times_assoc;

Refine exten2 Times ? ?.Eq_refl;

Refine Eq_trans (times (inv (inv y)) (inv x));

Refine Times_Inv;

Refine exten2 Times ? ?.Eq_refl;

Refine Inv_invol;

Save Inv_conj;

(* And finally, show [x,y]*z = [x*z,y*z] *)

Goal {x,y,z:obj G} Eq (conj (comm x y) z) (comm (conj x z) (conj y z));

intros;

Refine Eq_sym;

Refine Eq_trans (times (conj (times x y)z) (conj (inv(times x y)) z));

Refine +1 Times_Conj;

Refine exten2 Times; Refine Times_Conj;

Refine Eq_trans (inv (conj (times x y) z));

Refine exten Inv; Refine Times_Conj;

Refine Inv_conj;

Save comm_conj_hand;





Chapter 6

Conclusions

We spent quite some effort in formalizing all kinds of mathematical definitions
and lemma’s in type theory. What did we learn from the exercise? Perhaps most
surprising is that it took a lot more time to formalize proofs than we initially thought
it would take. In the beginning of the project, most effort was spent in building
from scratch a library full of very trivial lemma’s. When we arrived at a higher level
where we tried to prove more involved lemma’s, formalizing was still hard. Namely,
compared to the original mathematical texts, we had to add a lot of details and
side conditions not mentioned in the original proof. For example, half a page of
mathematical text was blown up to ten pages of LEGO code. We feel that the
current state of technology of proof checkers is not suitable to fully formalize non-
trivial parts of mathematics. Currently, proof development systems are little used
by mathematicians. This is not because of unwillingness to use computer systems,
nor because of lack of persistence on their side. The reason is that the effort to fully
formalize a proof is out of proportion to the insight we gain.

On the other hand we do feel that when proof checkers get smarter, and when
good libraries of formalized mathematics are built, in time these systems are promis-
ing and can be extremely useful.

6.1 Recommendations

Before we present some recommendations to be implemented in proof development
systems, let us first point out two fundamental obstacles one has to overcome when
starting a large formalization.

Start from scratch

Every library of formalized mathematics is based on certain choices which are not
always the most optimal in all circumstances. Especially the decision which logical
system is used, is often an area of ongoing discussion. As a consequence, often one
finds it necessary to develop from scratch all theory needed to prove or to formalize
a particular theorem. As the author has experienced, this is a highly elaborate
process. So we have no alternative then to reuse existing libraries of formalized
mathematics, and to extend them to the level needed.

91
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Level of detail

Although at first sight it may seem surprising, proofs found in mathematical texts
are almost never integral proofs. Proofs are merely a list of arguments which should
convince the reader that the formulated lemma is true indeed. The author gives a
sketch of how to prove the theorem. All steps in the proof which are trivial for the
intended reader, are left out. So often, all side conditions are discarded and it is
for the diligent reader to verify them. For this reason, the level of detail of proofs
is never the same level needed by proof development systems. When a proof is fed
into such a system we have to add the low-level proofs ourselves. However, proof
checkers should be able to generate proofs automatically to fill in all the gaps as
much as feasible. Especially in the area of equational reasoning, we think a lot is
to be gained. See Section 6.2 for more on this topic.

6.1.1 Requests for implementators

Let us formulate a few areas in which present proof development systems could be
enhanced. Some of our findings are only valid for type checkers, or even just a
particular type checker like LEGO, other observations have a more global value.

Expressive power

Most proof development systems have too little expressive power. As a result, even
simple mathematical statements become unreadable when formalized. For example,
consider the following lemma.

6.1.1. Lemma. Let G be an abelian group. Then

∀x, y ∈ G [y + 0 + x = x + y] .

In LEGO, we formalize this like

lemma611 : Prop

≡ {G : AbGroup}{x, y : carG}
Eq (ap (PlusAGG) y (ap (PlusAGG) (UnitAGG)x))

(ap (PlusAGG)x y) .

Obviously, the expression lemma611 is hard to read. We mention four items for
improvement.

Annotations. Similar to programming languages, the expression lemma611 consists
of a chain of ASCII characters. For example, instead of ∀x ∈ A[φ(x)], we
have to write {x : A}phi(x). Since we do not have annotations like sub- or
superscript, fonts or typefaces like in type-setting languages, expressions are
flattened. Annotations would add structure to the expression for easy parsing.

Infix notation. The lack of infix operators1. If we take a look at the part ‘x + y’ of
Lemma 6.1.1, we wish to formalize it not as ‘(ap PlusAG G) x y’, but as:

x (ap PlusAG G) y .

1In LEGO, infix notation can be imitated up to a certain degree, namely by the dot-application.

In LEGO, ‘x.plus y’ stands for ‘plus x y’. See the LEGO manual (Luo and Pollack 1992) for details.
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Overloading. The lack of overloading prevents us to write

x (ap Plus G) y .

So for example, each time we introduce a new additional structure, we have to
define a new term for addition and assign it a unique name. Finding unique
names which are easy to recall is a hard task.

Context dependent parsing. Argument synthesis, see (Luo and Pollack 1992), is in
some cases extremely useful. For example, when we apply the polymorphic
operator of function composition, argument synthesis allows us to leave out
the types of the applicants. The mechanism is able to derive these types from
the context in which they appear. So instead of writing

comp T U V f g ,

for types T , U and V , and for functions f : T → U and g : U → V , we may
just write

comp f g .

Another example where argument synthesis is very convenient, is the polymor-
phic defined book equality (see Definition 3.1.5). However in some other cases,
this mechanism is insufficient. For example, let us take a look again at our
formalization of ‘x + y’ in LEGO:

x (ap Plus G) y

First, G should be derivable from the type of x and y, which is carG. Second,
if we examine the definition of Plus, we will see it consists of two parts, namely
the product of some function p together with a proof that p preserves equality.
Then it should be clear to our proof checker that we need the former part of
Plus. If the type checker could derive this for us, we would be able to simplify
the running expression to merely

x Plus y ,

which very closely resembles the original ‘x + y’.

To summarize, we would like that our type checker has a lot more expressive power
in the sense of annotations, infix notation and overloading, together with some kind
of sophisticated mechanism of smart context dependent parsing.

Efficiency

Compared to other proof checkers, LEGO seems to be rather inefficient in type
checking. The system consumes both a lot of processing time, as a lot of system
memory. We do have to realize that LEGO is in fact just a proto-type, and was never
designed for actually doing really large proofs. However with respect to efficiency,
we can point out a few areas in which LEGO, and most other proof checkers, could
be improved.

Arithmetic. Inductively defined natural numbers are essentially represented by lists.
So it is a unary representation which is totally unsuitable for computations
involving large numbers. For example, even a simple operation like addition
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already has complexity Θ(n). We wish to have types like the natural numbers,
the integers and the rationals as first class citizens in our system. Only then
computations may become acceptably fast. For other solutions see (Huisman
1997). Remark that one could argue that in formalizing mathematics, we never
deal with canonical natural numbers bigger than perhaps ten.

Annotated lambda terms. LEGO has a mechanism to file the current proof state of
all verified proofs to disk. All named proofs and their accompanying types
are saved. The next time the user wishes to restore a LEGO session, the type
checker does not have to reconstruct all terms again by executing every tactical.
Loading the saved lambda terms, and checking their types is much quicker.
Surprisingly enough, in our experience, the opposite is true. Reconstructing
via tacticals is faster then verifying types. The reason for this is that in the
original interactive session, now-and-then we helped the proof checker by giving
hints how convert a type to an intermediate term. We sometimes do this to
speed up the type checking of our interactive session. Besides lambda terms
and types, also these intermediate steps should be saved to disk as annotations.

Reduction. When running large scale formalisations, fast proof checking is impor-
tant. The implementation of term rewriting and β-, ι- and δ-reduction must
be very efficient. Users of proof checkers are almost insatiable with respect to
speed.

Environment

Another area in which most proof development systems are weak is the proof-
development environment. Already a lot of research is done in user interfaces.
We mention the Centaur project. Among other aspects, part of this project is to
produce textual proofs out of lambda terms (Bertot, Kahn and Théry 1994). When
we focus ourselves on LEGO, we mention two items.

Presenting proofs. We need tools for presenting proofs in various formats. For ex-
ample, a pretty printer for LATEX is desirable. Sometimes we wish to auto-
matically strip all proofs leaving the plain definitions, lemmas and comments.
The idea of merging code and documentation is already used in the system
(C)WEB (Knuth 1983, Knuth 1992). Besides LATEX, another useful output
format is hypertext markup language (HTML). In Appendix A.4.3 we present
a so-called CGI-program that allows us to present LEGO-files via a web server
via the internet. LEGO source is presented in such a way that definitions and
lemmas become hyperlinks. To unfold a lemma or definition, the user has to
follow the link.

Modules. LEGO, like some other proof development systems, lacks a well developed
module mechanism. When working on large projects where large formaliza-
tions of mathematics are done by more people, we need a module mecha-
nism. At least two elements are needed. First, given a source file, it should
be clear which definitions and lemmas are public and exported, and which
are local. The implementation should be hidden, or at least clearly sep-
arated from the export part. Second, we need to be able to indicate de-
pendencies between source files in order to properly make theories and load
all depending files first2. Examples of practical module mechanisms can be

2Recent versions of LEGO do support this via the Module keyword and Make command.
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found in programming languages like Clean, Modula or Ada. Also we refer
to (Courant 1997, Courant 1998), who studied modules with respect to type
theory.

Logic

The final two aspects of possible improvement of proof development systems we
wish to bring up concerns logic.

Forward reasoning. As pointed out in Section 4.1, type checkers mainly construct
proofs by backwards reasoning. Because this is counter-intuitive to mathemat-
ical practice, we wish to have a mechanism for forward reasoning. This could
be achieved by allowing nested lemmas. So while proving a lemma, we wish to
state and prove a local (sub)lemma, which in turn may be used in the proof
of the ‘parent’ lemma. A sublemma then is in fact just a definition local to a
lemma, interactively build by tacticals.

Proof theoretical strength. Most proof development systems are based on a prede-
fined, fixed set of logical environments. For example, Mizar (Trybulec and
Blair 1985, Rudnicki 1992) verifies proofs based on a variant of Zermelo-
Fraenkel set theory, and LEGO supports the Calculus of Constructions, with
the option of inductive types or sigma types. Although not every mathemati-
cian may be concerned about the logical system he uses to prove a theorem,
in some occasions it is important to know. For example, do we need, or allow,
second order logic? Or higher order logic? Do we want to build purely con-
structive proofs, and if not, at which steps do we really need classical logic?
So we wish to be able to tune the logic used in our proof development sys-
tem. With respect to type theory, a good mechanism for this seems to be
Pure Type Systems (PTSs, Barendregt 1992). The type checker Constructor
(Helmink 1993) does support a large subset of PTSs. However, Constructor is
not supported anymore.

6.2 Lean proof checking

The proof of the binomial theorem in Section 4.3 shows in extreme how equational
reasoning can get out of hand. For this reason, we have developed a simple, flexible
and rather efficient method to solve equational problems in type theory. The main
ingredients of our method are a two-level formalization of universal algebra based
on congruence types. The approach chosen is also intimately related to the design
of hybrid systems and can be seen as an attempt to lay the foundations for a
theoretical understanding of the interaction between proof checkers and computer
algebra systems. In the future, it seems worthwhile to try to extend the framework
to equational theories which do not yield a confluent terminating term rewriting
system. A longer term goal related to this research is the understanding of computer
algebra algorithms. A full understanding of their nature as term rewriting systems
is necessary to see whether a type system with (a reasonable variant of) congruence
types can provide a theoretical framework in which the integration of proof checkers
and computer algebra systems can be justified.
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6.3 Related work

Beside Automath (de Bruijn 1970), one of the first projects in which large bodies of
mathematical texts are verified in a thorough way, is the Mizar project (Trybulec
and Blair 1985, Rudnicki 1992). In Mizar a so called mathematical vernacular is
used to represent mathematical texts. Mizar is not based on type theory, but on a
variant of Zermelo-Fraenkel set theory. Hence it does not produce proof objects as
first class citizens. During the last decade, a large number of verified mathematical
texts where added to the Mizar Mathematical Library (MML). More ambitious is
the QED project(Anonymous 1994), which has as goal to build a repository that
represents all important mathematical knowledge.

Paul Jackson worked on formalizations of abstract algebra in his PhD thesis
(Jackson 1995). The proof assistant used is the NuPrl system. Also Jackson intro-
duced a notion of reflection which is related to our two-level approach.

Zhaohui Luo introduced the notion of coercive subtyping in (Luo 1997) in type
theory. The idea is to use subtyping as a mechanism for notational abbreviations.
For example, if Group is a subtype of Monoid via a coercion function, then a group
of type Group can be regarded as an object of type Monoid. These ideas are worked
out furthermore in (Jones, Luo and Soloviev 1998).

In the context of our thesis, we also must refer to Anthony Bailey’s work on
formalizations of abstract algebra (Bailey 1998). Bailey formalized the fundamen-
tal theorem of Galois Theory in the type theory using the LEGO system. For
this, he designed a variant of LEGO to implement the synthesizing of implicit co-
ercions. Following Bailey, coercions are implemented in the proof system Coq by
(Säıbi 1997). Furthermore, Bailey also investigated literate formalizations. Liter-
ate formalization stems from Donald Knuth’s concept of literate programming. The
idea is to write source files of mathematics which can both be mechanically checked,
as well as easily be pretty printed for human reading.

6.4 Results

We end this chapter by repeating some points presented in the previous chapters 3
and 4.

1. As expressed in the introduction of Chapter 3, we prefer to keep definitions as
simple as possible. So while formalizing a mathematical notion, we are eager
to give a definition as clearly as possible, so that it can be easily validated that
the definition models our intention. The price to pay is that some proofs may
get more involved. But after all, for verification we have the proper tools.

2. Introducing sets as the product type of a type T , a binary relation R over
T , and a proof that R is an equivalence relation, appears to be a suitable
definition for formalizing (constructive) sets (see Section 3.1.2). Following this
concept, we defined functions over a type T as a tuple of an arrow f , together
with a proof that f preserves equality (see Section 3.2.1).

3. When we allow the formation of the set of propositions Ω as a setoid using
if-and-only-if as equivalence relation (see Definition 3.1.7), this implies that:

(a) Predicates (and subsets) can be defined as functions into Ω (Section 3.2.4).

(b) The power set of a set is a set again (Section 3.3.2).
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4. When we define the or-connective by inductively, the impredicatively defined
or-connective inherits the strong elimination rule. As a result, we can define
the case distinction over discrete sets and even the characteristic function of
a decidable predicate (see Section 3.3.4). For an application, see Section 4.2.3
where we define a prime generator using bounded minimalization. Because
all proofs are constructive, the prime generator actually computes primes by
normalization. Also in some cases, proof objects become much shorter (often
merely reflexivity).

5. Mathematical structures are defined in a generic way using signatures, a carrier
set and valuation functions (Definition 3.4.3), all packed together by sigma
types.

6. We formalized a non-constructive proof of the existence of k-th roots in the
complex field in Section 4.4.2. For this we introduced in Definition 3.5.15 the
real number system R as a discrete ordered field such that every polynomial
in R of odd degree has a root, and which has a square root function over R.
Polynomial rings are defined in Section 4.4.1 as sparse, multi-variate, relaxed
polynomials.

7. We developed a library of formal mathematics. Over 18,000 lines of code were
written which consist of roughly 600 definitions and 1200 theorems. It takes a
few hours for LEGO to load and check all the code on a Sun SparcStation 20
with TMS390Z55 processors and 384MB of internal memory.

8. We wrote a front-end for LEGO source and proof-objects files to view these
pretty-printed via a web-server on the world-wide-web3.

3See Appendix A.4.3 and http://www.cs.kun.nl/fnds/lego/markr.shtml.





Appendix A

The LEGO System

LEGO is a type checker written by Randy Pollack in the functional language NJ-
SML (New Jersey Standard Meta Language). The source is freely available from the
web site http://www.dcs.ed.ac.uk/home/lego/. There you will also find docu-
mentation, libraries of formalized mathematics, tools, and other useful information.

A.1 Quick introduction to LEGO

For an introduction to LEGO the reader is referred to the manual (Luo and Pollack
1992). In this section we just give some high-lights.

We initialize LEGO by Init XCC;, so we work in the Extended Calculus of
Constructions ECC (Luo 1990) with inductive types. Actually we don’t need the
full power of ECC, but it is the weakest system LEGO offers which has more then
two sorts and inductive types.

A.1.1 Argument Synthesis

LEGO has a concept of meta variables, called existential variables, for lambda
terms. The type checker will try to resolve existential variables automatically. If
it fails, we should supply the correct terms ourselves. An existential variable is
denoted by a question mark. So, suppose we have defined function composition as

Comp1 : ΠA, B, C:SET. (A→ B)→ (B → C)→ (A→ C)
≡ λA, B, C:SETλf :A→ B λg:B → C λx:A. g (f x)

and suppose A, B, C : SET, f : A→ B and g : B → C, then we may write

Comp1 ? ? ? f g

and LEGO will resolve the existential variables to A, B, and C respectively. Fur-
thermore, in LEGO we can annotate abstractions to indicate that they will be
applied to implicit existential variables. So define

Comp2 : ΠA, B, C pSET. (A→ B)→ (B → C)→ (A→ C)
≡ λA, B, C pSETλf :A→ B λg:B → C λx:A. g (f x)

and suppose once again that A, B, C : SET, f : A → B and g : B → C, then we
may write

Comp2 f g .

99
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Description LEGO Code Pseudo LEGO
sorts Prop:Type(0):Type(1) PROP:SET:TYPE

:Type(2) :BIGTYPE
variables x, y, z, A, B . . . x, y, z, A, B, . . .

definitions ap, Eq . . . ap , Eq , . . .

meta-variables ? ?
λ-abstraction [x:A]B λx:A. B

[ :A]B A\B λ :A. B

[x|A]B λxpA. B

application ap f x ap f x

f.ap x f.ap x

Eq|A Eq pA
Π-abstraction {x:A}B Πx:A. B ∀x:A. B

{_:A}B A -> B A→B

{x|A}B ΠxpA. B

Σ-abstraction <x:A>B Σx:A. B

< :A>B A#B A×B

projection z.1 z.2 π1(z) π2(z)
pairing <x,y> <x, y>

Table A.1: Informal definition of LEGO terms and of pseudo LEGO.

A.1.2 Pseudo LEGO

Informally, LEGO terms are build following the lines of Table A.1. This table also
contains the first part of an informal definition of a pseudo LEGO we use throughout
this thesis.

In Table A.2, we extend the pseudo LEGO by adding some syntactical sugar.
This improves the readability of LEGO source considerably. For example, LEGO
has only projection of two-tuples as primitives, although it allows us to write
<x1, . . . , xn>. The scheme for projections in Table A.2 gives us projections of
n-tuples for arbitrary fixed n based on π1 and π2.

Description LEGO Code Pseudo LEGO
sets Eq x y x = y

x:el A x ∈ A

functions Fun A B A⇒B

BFun A B C (A×B)⇒C

Function A B A=⇒B

predicates R.ap2 x y <x, y> ∈ R (x, y) ∈ R

S:Pred A S ⊂ A

interpretation int A [[A]]
projection t.pπni q πni (t)
where pπi1q ≡ 1

pπ2
2q ≡ 2

pπi+2
j+1q ≡ 2.pπi+1

j q

Table A.2: Extension of pseudo LEGO.
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A.1.3 Recursive definitions

We introduced a definition of the inductively defined natural numbers in Sec-
tion 1.3.1 as follows.

N ≡ µX : ∗.(0 : X, S+ : X → X)

Using the elimination principle εN, we defined the addition by recursion on the
secord argument:

add ≡ λx:N. εN (λy:N.N) 0 (λy:Nλh:N. S+h) .

Because this definition is hard to read, we extent pseudo LEGO to allow a different
notation for inductive definitions.

add ≡ λx:N. εN 0 =⇒ x

(S+y) =⇒ S+(addx y)

So we leave out the term (λy:N.N), we drop the abstractions λy:Nλh:N and sub-
stitute the name of the definiendum (addx) for the induction hypothesis h.

A.2 Naming conventions

Another topic concerns the ‘type of’ relation which assigns a type to a term in
typed λ-calculus. What might look trivial, but still needs some attention, is how
one should read ‘A : B’ for types A and B. Several opportunities come up.

1. A is of type B, A lives in B.

2. A proves B, B holds, ‘B’.

3. A is a member of B, A is an element of B.

4. A is a B, let A be a B.

The first option is used when we don’t want to give an interpretation to the typing
relation. The second is used for propositions, when B : PROP. The third is used
when we want to view types as sets and terms as elements. However, as Table A.3
shows, option three is not as convenient as the fourth. So although 3 is a more
literal interpretation, we have chosen to use 4 for readability. The whole point of
this discussion is that Set, el , Subset , . . . now should be given singular names
despite that they stand for collections.

By definition, SubsetA and el (PowersetA) are βι-convertible. Often the first
is used because it is shorter. The second has an advantage when working with
equality of subsets.

A.3 The LEGO library

The LEGO source files have a size of about 580,000 tokens. If printed out, it will
takeup about 18,000 lines and 300 pages. All definitions and proofs from chapters 3
and 4 and more are collected as a large LEGO library which is publicly available
(see below).
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mathematics type theory interpretation
A is a set A : Set A is a member of the class of sets

A is a set
x ∈ A x : elA x is a member of the elements of A

x is an element of A

S ⊂ A S : SubsetA S is an element of the subsets of A

S is a subset of A

S ∈ ℘(A) S : el (PowersetA) S is a member of the elements of
the powerset of A

S is an element of the powerset of A

f ∈ A⇒B f : FunAB f is a function

Table A.3: How to read the ‘type of’ relation.

A.3.1 Technical background

From the original LEGO library we only use the file lib logic.l. For reasons of
speed we were forced to make occasionally use of the Freeze command. Freeze

invalidates Make, so instead all files should be Loaded. Surprisingly, we have expe-
rienced that Load is quicker than Make anyway. You may want to increase the limit
on your heap space (60 Mb should do.) Before you start LEGO you can change
the limit by typing ulimit -d 60000 for bash, or limit data 60000 for csh. It
takes a few hours to load and check all the files on a Sun Sparc Station 20 with
TMS390Z55 processors and 384MB of internal memory. The files consist of more
then 18,000 lines of LEGO code.

A.3.2 Availability

The LEGO library we developed is obtainable via the web1. All files are shown by
the pretty-printer Lego2html. Furthermore, one can use anonymous ftp to get the
library as single compressed zip file.

ftp ftp.cs.kun.nl

Name: anonymous

Password: enter your e-mail address

cd /pub/CSI/CompMath.Found/lego

bin

get RuysLegoLib.zip

The size of this file is approximately 135 Kb, uncompressed about 600 Kb.

A.3.3 Demo Session

As an example of an interactive LEGO session we include a complete screen dump.
It is the proof of the Drinkers Principle (see Section 4.1). All text after the LEGO
prompt Lego> is typed by the user. The rest is system output. Note that we have
left out a small unimportant portion of text and replaced it by three consecutive
dots.

1http://www.cs.kun.nl/fnds/lego/markr.shtml
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Standard ML with LEGO

Generated Thu Jul 4 16:58:07 MET DST 1996

using Standard ML of New Jersey, Version 0.93, February 15, 1993

Sun4 with inversion and Then tactical

use command ’Help’ for info on new commands.

’Qrepl’ configured

Extended CC: Initial State!

strong predicative Sigma-types

Lego> Init XCC; Logic;

’Qrepl’ configured

Extended CC: Initial State!

strong predicative Sigma-types

...

Lego> [ExFalso = [P:Prop][H:absurd] H P];

defn ExFalso = [P:Prop][H:absurd]H P

ExFalso : {P:Prop}absurd->P

Lego> [Dn : {P:Prop} ~~P->P] [C : Type] [a : C] [D : C->Prop];

decl Dn : {P:Prop}(not (not P))->P

decl C : Type

decl a : C

decl D : C->Prop

Lego> [phi = [x:C] (D x) -> {y:C} D y];

defn phi = [x:C](D x)->{y:C}D y

phi : C->Prop

Lego> Goal Ex phi;

Goal

?0 : Ex phi

Lego> Refine Dn;

Refine by Dn

?2 : not (not (Ex phi))

Lego> Intros H2;

Intros (1) H2

H2 : not (Ex phi)

?3 : absurd

Lego> Refine H2;

Refine by H2

?4 : Ex phi

Lego> Refine ExIntro; Refine a;

Refine by ExIntro

?7 : C

?8 : phi ?7

Refine by a

?8 : phi a

Lego> Intros H5;

Intros (1) H5

H5 : D a

?9 : {y:C}D y

Lego> Intros z;

Intros (1) z
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z : C

?10 : D z

Lego> Refine Dn;

Refine by Dn

?12 : not (not (D z))

Lego> Intros H8;

Intros (1) H8

H8 : not (D z)

?13 : absurd

Lego> Refine H2;

Refine by H2

?14 : Ex phi

Lego> Refine ExIntro; Refine z;

Refine by ExIntro

?17 : C

?18 : phi ?17

Refine by z

?18 : phi z

Lego> Intros H11;

Intros (1) H11

H11 : D z

?19 : {y:C}D y

Lego> Prf;

H2 : not (Ex phi)

H5 : D a

z : C

H8 : not (D z)

H11 : D z

?19 : {y:C}D y

Lego> Refine ExFalso;

Refine by ExFalso

?21 : absurd

Lego> Refine H8; Refine H11;

Refine by H8

?22 : D z

Refine by H11

Discharge.. H11

Discharge.. H8

Discharge.. z

Discharge.. H5

Discharge.. H2

*** QED ***

Lego> Save DrinkersPrinciple;

"DrinkersPrinciple" saved as global, unfrozen
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A.4 Tools

Essentially, LEGO is just a plain command-line program, without an interface. A
convenient way to start the LEGO system is in a shell inside an editor like emacs.
In that way you can browse through the output and edit your input. Thomas
Schreiber wrote a very useful LEGO-interface for emacs in elisp for editing LEGO
proof scripts.

We wrote a few other programs which are quite helpful. These tools can be
downloaded via the web2.

A.4.1 legogrep

Legogrep is a Perl script which recursively searches through LEGO modules for
definitions, proved lemmas, et cetera. It takes into account the commands Make,
Load, Reload, Include, Module, and is aware of the LEGOPATH environment vari-
able. Regular expressions are allowed. An example is to search all occurrences of
cancel.*plus.

omega> legogrep cancel.*plus test_all

lib_nat_plus_thms: Save cancel_plus

lib_nat_plus_thms: Save cancel_plus

lib_nat_times_thms: Refine cancel_plus (suc a)

lib_nat_Le: Refine cancel_plus

lib_int_nat_lemmas: Refine cancel_plus

lib_int_basics: Refine cancel_plus n1

lib_nat_Le: Refine cancel_plus

A.4.2 legostat

Legostat is also a Perl script for generating statistical information of a LEGO ses-
sion. It is mostly used to measure the speed (or slowness) of checking large LEGO
files. The output will look like

omega> echo "Load lib_nat" | lego | legostat

parameters.l time= 0.02 sec 0:00:00 hms gc= 0.00 sec

lib_logic.l time= 2.06 sec 0:00:02 hms gc= 0.10 sec

lib_ML_eq.l time= 0.64 sec 0:00:00 hms gc= 0.01 sec

lib_start_up.l time= 0.38 sec 0:00:00 hms gc= 0.01 sec

lib_nat.l time= 1.72 sec 0:00:01 hms gc= 0.06 sec

time= 4.82 sec 0:00:04 hms gc= 0.18 sec

The column labeled time stands for the cumulative execution time. The gc column
is the amount of time spend at (major) garbage collections.

A.4.3 lego2html

Lego2html is a CGI program written in Perl. It generates HTML pages out of lego
source files. It is intended to present a lego file or a library of lego files in nice and
more readable way on the web. Proofs are replaced by hyperlinks. Following this
link unfolds the proof. A next link goes even one level deeper to a new page which

2http://www.dcs.ed.ac.uk/home/lego/html/tools.html



106 APPENDIX A. THE LEGO SYSTEM

shows the actual lambda term of the proof objects. Also a search form is added
at the bottom of each page. It uses the legogrep tool to search for a definitions or
lemmas in the lego files presented. Our LEGO library can be best viewed using this
tool. The hyperlink is:
http://www.cs.kun.nl/fnds/lego/markr.shtml
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Samenvatting

Het uitgangspunt van gemechaniseerde bewijsverificatie is het gebruik van compu-
tersystemen om een hoge graad van zekerheid te verkrijgen dat een bepaald bewijs
een gegeven stelling inderdaad bewijst. Tot op heden worden bewijsverificatie-
systemen door wiskundigen nog maar sporadisch gebruikt. Door middel van het
bestuderen van deze systemen is meer inzicht verkregen wat de obstakels zijn en
hoe de bruikbaarheid van bewijsverificatiesystemen verhoogd kan worden.

Dit proefschrift behandelt een speciale klasse van bewijsverificatiesystemen, na-
melijk zij die op type-theorie gebaseerd zijn. De type-theorie leent zich onder andere
goed voor bewijsverificatie omdat er een sterke analogie is tussen enerzijds typen
en haar inwoners en anderzijds, stellingen met hun bewijzen. Reductie van lamda-
termen correspondeert dan met normalisatie van bewijzen. Omdat inwoners van
typen geconstrueerd worden door zogeheten lamda-termen, past de constructieve
logica het beste bij type-theorie. In deze logica wordt de aandacht van waarheid
en onwaarheid verschoven naar bewijsbaarheid. In hoofdstuk 2 is kort ingegaan op
een aantal benaderingen van logica, te weten de formalistische, de logicistische en
de intuitionistische wijze. Ook is hier gekeken hoe logica geformaliseerd kan worden
in type-theorie.

Het beoefenen van wiskunde kan verdeeld worden in drie handelingen: het bewij-
zen, het definiëren en het rekenen. Voordat wiskunde bedreven kan worden, moeten
eerst alle concepten waarvan gebruik gemaakt wordt, eenduidig gedefiniëerd wor-
den. Het is gebleken dat dit proces bij mechanische verificatie uiterst moeizaam
is, omdat begonnen moet worden vanaf de meest elementaire wiskunde. Hoofd-
stuk 3 richtte zich volledig op het formaliseren van basale wiskundige begrippen als
‘verzameling’, ‘monoide’ en bijvoorbeeld ‘de complexe getallen’.

Wat betreft het rekenen is in hoofdstuk 4 de stelling van Euclides geformaliseerd
die zegt dat er oneindig veel priemgetallen zijn: gegeven een willekeurig natuurlijk
getal is er altijd een groter getal te vinden dat ook priem is. Omdat het bewijs
constructief gegeven is, kon uit het existentiebewijs een ’getuige’ gevonden worden:
gegeven een getal rekent het systeem voor ons het eerst volgende priemgetal uit. Dit
wordt puur verkregen door normalisatie. In hetzelfde hoofdstuk is tevens nog een
aanzet gemaakt tot de complete formalisatie van de hoofdstelling van de algebra.
Dit bleek echter te hoog gegrepen met de voorhanden zijnde middelen. Wel zijn we
gekomen tot de formalisatie van een klassiek bewijs van het bestaan van wortels in
het complexe vlak van willekeurige graad. Hiervoor is onder andere een korte studie
gedaan naar mogelijke definities van veeltermen.

Om aan te geven hoe omslachtig het redeneren met gelijkheden is, is als voor-
beeld een bewijs geformaliseerd van de binomiumstelling. In hoofdstuk 5 is een
methode gëıntroduceerd om het redeneren met gelijkheden in bepaalde gevallen te
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kunnen automatiseren. Basisidee is om een scheiding te maken tussen syntax en
semantiek en om de rekenregels van groepen via herschrijfregels aan het bewijsve-
rificatiesysteem toe te voegen.
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