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Abstract

We model an economy with social institutions that facilitate trade and induce
three types of costs: establishment costs, access costs, and use costs. Use costs
are specific transaction costs related to the use of these trade institutions. We
assume that a trade institution is economically completely determined by the
costs it imposes and by the effects on the trades it facilitates. We extend the
Pareto efficiency concept to include various modes of organization of social
institutions: the costs and benefits of these organizations are expressed in the
trades they facilitate.

Within this setting we discuss a valuation equilibrium concept, in which
all agents use a common conjectural price system that assigns to every trade
institution the price vector that would prevail under it. This feature of the
equilibrium is important in securing the second welfare theorem, and is new
to the analysis of economies with costly trade. Since the use costs can be
nonlinear, there are non-convexities that prevent the second welfare theorem
from obtaining in a finite economy, but we show it for large economies.
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1 Designing trade institutions

What size and what kind of resources should be allotted to an institutional trade

or market infrastructure? With the emergence of Internet trading, also known as

“e-commerce,” this is one of several fundamental open questions in contemporary

economics. In fact, the trade infrastructure question is not addressed in the new

institutional economics. (We refer to, e.g., Ménard, 1995.) In this paper we develop

some notions that further our understanding of this important issue.

In our model we distinguish the following three functions in the design of a specific

trade institution.

• The provision system offers a network of “plugs,” which are economic agents,

organizations, or admission points at which participating traders can get access

to specific private commodities. On the Internet these plugs are the servers

at which traders obtain access to web sites offering certain commodities. In

a banking system the plugs refer to the Automatic Teller Machines (ATMs)

available to access monetary instruments. In telephone service provision and

electricity supply the “plug” concept has an obvious interpretation as well. We

emphasize that the connections between the plugs in such a network are part

of the provision system as well.

• The connection process refers to the searching process to obtain access to the

provision system. This searching process is a costly action on the part of indi-

vidual participants in the trade institution.

• The user interface refers to the frequency and intensity of the use of the pro-

vision system by a participant. This also refers to the interaction between

suppliers and demanders to negotiate about the contracts and to overcome in-

formational asymmetries.

From the above it should be clear that we understand an institutional trade infras-

tructure to be a structured configuration of collective projects1 that facilitate the

trade of private goods. This infrastructure may be concentrated around a physical

network, such as a road system, an energy network, an “electronic highway,” or a

1Here the notion of a collective project represents an indivisible public good that has widespread
externalities. Such a collective project can be provided by a public government as well as a private
club or corporation.

2



mall that facilitates transactions. It may also be a health care system that organizes

the provision of private health services, or an organization (a club or a federation)

that channels the provision of services to its members.

The trade institutions that make up a trade infrastructure can be provided pri-

vately and/or publicly . In each case, the trade institution retains its collective na-

ture. Furthermore, a trade institution may be designed top-down, or it may emerge

bottom-up. An example of top-down design is the regulation of markets for utili-

ties, traditionally viewed as semi-publicly provided private goods, such as electricity,

water, and telephone services. An example of bottom-up emergence is the rise of

e-commerce. Top-down design commonly goes with public support and oversight

of the institution, whereas bottom-up emergence usually is privately supported and

unregulated.

In this paper we consider the design and implementation of certain trade insti-

tutions that facilitate the trade of a given set of certain private goods. We provide

a general equilibrium framework in which one can study the optimal design of such

trade institutions. In this respect the analysis presented in this paper is purely nor-

mative, and should not be construed to have any positive implications. In particular,

we offer a system of valuing such trade institutional designs in relation to the services

they provide. The insights reached are rather forceful: we establish the full decentral-

ization of first best allocations using appropriate price and valuation systems, thus

showing that certain institutional aspects in the trade process have to be taken into

account fully in order to establish first best allocations. Thus, users determine by

their independent, but price-coordinated, choices, how much they are willing to con-

tribute towards the maintenance of the trade institutions. This is illustrated by the

rise and decline of certain historical trade institutions such as the Dutch and English

East Indian Companies and the medieval Hanse traders guild.

Next we address the precise nature of a trade institution from a general equilibrium

perspective. When we buy a book from a bookstore, this activity easily fits into

Debreu’s (1959) contingent commodity concept: we consider the book as available

at a given time, location, and state of nature, as a separate commodity. In this

view, the traditional bookstore offers an extensive array of such commodities, and

this array changes day by day. However, when we use an Internet meta-search to

find a book from the cheapest on-line source, we are using a different bundling of

commodities, as Debreu would view it: the ability to connect to the Internet, to the
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meta-search web site, to transact over the Internet securely, and so on. Thus, the

experience of buying a good has many dimensions. In this paper, the institutional

surroundings of a transaction have a new role. We would argue that this is a new

and exciting concept of commodity, integral parts of which are information in various

forms and the relationship of providers and demanders. Think of Debreu’s concept

of a commodity as including a new component: institutional design. For instance,

having a medical procedure done by an HMO provider is in our model a different

commodity than having it performed by an independent medical care provider.

The basic element of our model is the representation of these aspects of com-

modities through a differentiated notion of a trade institutional design. Thus, any

complex combinations of aspects of a commodity in the new “e-commerce” world, for

instance, are members of an unstructured set of potential designs of the trade institu-

tions under consideration. Within the framework of this construction, it is relatively

straightforward to encompass configurations of trading services viewed as relations

between buyers, sellers, and other economic actors, such as auditors and marketers.

The amounts traded between buyers and sellers can then be measured by numbers,

while the description of the trade institution itself captures their non-measurable as-

pects. This dichotomy in the description of commodities allows us to use powerful

general equilibrium theory techniques while preserving the interesting complexity of

the new world of e-commerce in our model.

The three functions in the design of a trade institution described above correspond

to specific costs that are borne collectively or individually.

• Setup costs are the costs of establishing the provision system. In the case of

e-commerce this covers the costs of installing telecommunications wires, the

acquisition of servers, and the enforcement of electronic contracts. In principle,

setup costs are borne collectively. (In practice we have observed a private

takeover of the Internet after its publicly financed inception.)

• Access costs are the individually borne costs for a participating trader related to

the connection process within the provision system. These costs are independent

of quantities traded. In the case of e-commerce these costs cover the purchase

of a modem, the use of telephone services to gain access to the Internet, and

the opportunity costs of waiting time to access web sites of one’s choice.

• Use costs are the transaction costs related to obtaining a specific commodity
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provided. These costs refer to the use of the user interface including the costs of

searching, negotiating and overcoming informational asymmetries. These costs

depend explicitly on the quantities traded.

Access costs are relatively easy to measure and to make accountable to the partici-

pating agents. In many situations, costs are attributed to agents only on the basis

of access, for example, local telephone calls in the USA. On the other hand, some

providers may choose to bear these costs and to provide free access, in order to reap

the external effects of scale of the provider system.

Use costs are distinguished because they are closest to what is known as “transac-

tion costs” in the literature. We prefer the term use costs to make a sharp distinction

between general transaction costs of the overall trade infrastructure in the economy

and the transaction costs related to the specific trade institutions under considera-

tion. The problem with use costs, however, is that they are intrinsically related to

the benefits an agent receives from participating in a trade institution, so they cause

non-convexities in individual utility functions that are hard to overcome. We resolve

this problem in our second welfare theorem by invoking a large economy.

In the new institutional economics literature, markets are understood to be goods

themselves. Moreover, “the institutions of a market provide an oriented set of comple-

mentary immaterial capital goods which reduces the direct cost of individual trans-

actions.” (Loasby, 2000, page 300.) Our approach attempts to directly merge the

choices made with regard to these market capital goods as collective trade infrastruc-

tural projects into the standard Walrasian model of a competitive market system.

The three types of costs related to these collective trade infrastructural goods repre-

sent the different cost configurations that are imposed on the society and the market

participants when certain choices are made. This allows us indeed to consider changes

— in particular reductions — of the corresponding costs of making transactions.

The nature of the trade institution in our model is multifaceted and wide-ranging.

Its specification is selected from a set of possible designs. A design of the trade insti-

tution facilitates access to and trade of a finite number of given private commodities.

The trade institution may supply books, CD’s and electronics on the Internet; finan-

cial services in a banking network of ATMs; a network of medical specialists in a

hospital system providing private medical services; or any combination of the above.

Apart from the finite number of private goods traded within the trade institution, our

model assumes one composite private commodity, which incorporates the other com-
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modities in the economy. The model is completed with a production technology that

describes how the composite commodity is converted into the commodities traded

within the trade institution considered. It also allows us to use Pareto efficiency as

the optimality criterion in the presence of a trade institution.

The equilibrium concept used to analyze behavior in our model is that of valu-

ation equilibrium. We assume that all private commodities traded within the trade

institution and the composite commodity are traded on competitive markets, so a

uniform market price can be assigned to each of them. The exact nature of each

commodity traded within the trade institution, however, is determined by, and varies

with, the design of the trade institution. Hence, there exists a trade-off between the

valuation of a specific trade institutional design and the value or price of each pri-

vate commodity. The valuation equilibrium concept captures the decentralization of

individual decisions in the determination of the design of the trade institution.

This implies that a valuation equilibrium is an allocation, a production plan and,

for every specific design of the trade institution, a price vector for private commodities

as well as a tax and subsidy system — akin to Lindahl personalized prices — such

that, given the price and tax-subsidy systems, (i) each agent maximizes her/his utility

function over her/his budget set; (ii) the production plan of the commodities traded

maximizes profit; and (iii) the selected trade institutional design maximizes the social

surplus. We show that all valuation equilibria are Pareto efficient, extending the first

welfare theorem to our model. Regarding the second welfare theorem, we show that

in large economies Pareto efficient allocations can be decentralized using appropriate

price and valuation systems.

Our approach allows for the study of certain specifications of trade infrastructural

institutions. For example, the public-private partnership equilibrium discussed in van

der Laan, Ruys and Talman (2000), which provides a way to allocate the setup costs

of the trade infrastructure to its users, is shown to be efficient. Therefore, it is a

specification of the model presented here.

Alternative approaches to the topic of this paper mostly use techniques from game

theory and mechanism design theory. The literature has until now mostly considered

certain aspects of trade infrastructures separately. For example, Baesemann (1977)

studies the formation of small market places in a dynamic model, Bose and Pingle

(1995) discuss the endogenous formation of stores as intermediary traders, and Yang

and Ng (1993) develop a number of highly specified general equilibrium models in
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which the division of labor and the extent of markets are endogenous. (See also Yang

2001.) Shubik and his collaborators have studied a class of “trading-post” models,

which are static models of exchange in separate markets for each commodity, with

traders acting non-cooperatively; the main results of this work concern the inefficiency

of Nash equilibria of these trading games and convergence of Nash equilibria to com-

petitive equilibria under replication; see, for example, Shubik (1984). Furthermore,

Berliant and Wang (1993) develop a general equilibrium model in which a linear city

emerges endogenously, where with high market set-up costs, a unique central business

district is the outcome. A more comprehensive approach is developed in Berliant and

Konishi (2000), who discuss a general equilibrium model with mobile consumers and

immobile technologies in which the exchange of commodities occurs at marketplaces,

the number and location of which is determined exogenously. Finally, Zhou, Sun and

Yang (1999) develop a general equilibrium model with specialization and division of

labor, which includes transaction costs and allows for increasing returns. Working

with an atomless economy and personalized production sets, they show existence of

equilibrium, the two welfare theorems, and core equivalence.

2 The structure of the economy

Throughout this paper we use the symbol A to indicate the set of all economic agents.

The set A can be finite or infinite. We assume that if A is infinite, it is endowed with

a locally compact Hausdorff topology T . Denote by Σ the σ-algebra of Borel sets

generated by the topology T and denote by µ : Σ → [0, 1] a regular Borel measure on

(A, Σ) such that µ(A) = 1, i.e., µ is a probability measure. If A is finite, we assume

that Σ = {E | E ⊂ A}.
There is one composite commodity in the economy with index 0. It represents

those commodities that are to be traded through well established markets.2

There are ` trade commodities indexed by the set L = {1, . . . , `} that are traded

within a newly designed trade institution. As mentioned in the introduction the

trade institution provides access to these trade commodities and facilitates the trade

of these commodities.

The set of all commodities in the economy is denoted by M = {0} ∪ L, where M

2We remark that all the results in this paper remain valid if we were to replace commodity 0
with a finite number of commodities. We avoid this to keep the notation relatively simple.
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contains m = ` + 1 commodities. The consumption space is given by the nonnega-

tive orthant of the m-dimensional Euclidean space Rm
+ . We indicate by an integrable

function w : A → R++ × {0}` the endowment of (private) commodities attributed

to the agents in the economy. Agents have zero endowment of the trade commodi-

ties provided through the newly designed trade institution, but they have a positive

endowment of the composite commodity.

The trade commodities are produced according to a production set Y ⊂ Rm,

which is assumed to be a nonempty, convex pointed cone, comprehensive from below

(free disposal), and such that Y ∩ Rm
+ = {0}. This amounts to the assumption of

constant returns to scale.3 In conjunction with the assumption on endowments, it

follows that there is only one primal input, the composite commodity.

Next we turn to the description of the trade institution itself. The trade institution

can have several designs , determined by the specification of the provision system, the

design of the connection process, and the user interface introduced in the previous

section. Thus, the design of the trade institution is selected from a set Γ of all possible

specifications. For each design specification γ ∈ Γ we can now describe its different

constitutional aspects by the costs related to them.

First, the provision system is represented through the setup costs, which are given

by a vector of fixed inputs c(γ) ∈ Rm
+ . These costs are related to the construction

and/or maintenance of the provision system. As discussed before these costs are as-

sumed to be independent of the quantities traded. (Note that there is an implicit

connection between the cost and the capacity of the trade institution, which is incor-

porated as a feature of γ.) Thus, we introduce c : Γ → Rm
+ as the setup cost function

assigning to each design γ ∈ Γ the fixed input vector c(γ) ∈ Rm
+ .4

The second component of the trade institution is the access network . Before an

agent can use or consume private commodities, she or he has to access the provision

system. The costs of making these connections are called access costs and these costs

are borne by individual agents. For each design γ ∈ Γ the induced access costs are

represented by a function rγ : A → Rm
+ , called the access cost function related to

3We easily may replace this constant returns to scale hypothesis with an assumption of decreas-
ing returns to scale, but it would not offer additional insight into the model. However, it would
unnecessarily complicate the notation.

4This formulation may appear to rule out substitutability of inputs. However, we could have
specified c as a correspondence to deal with this issue without any substantial impact on the analysis
except for a notational complication — see Diamantaras, Gilles and Scotchmer (1996).

8



γ ∈ Γ.

This formulation of access costs is very general. It allows these costs to be in

terms of the composite and/or any of the traded commodities. As a special case, it

allows the access costs to be only in terms of the composite commodity. However,

the additional generality of allowing the access costs to be in terms of the traded

commodities also is useful in capturing some realistic situations. For example, one

has to use the Internet to get appropriately configured browser software in order to

be able to do online shopping or banking. This is a true up-front cost for trading on

the Internet.

The third component of the trade institution is the user interface, which refers

to the relation between the provision system and the consumer of the commodities

provided. The costs related to interfacing are usually called “transaction costs.” Here

these costs only refer to the costs of trading the ` specific trade commodities, not all

commodities, some of which are the commodities subsumed in commodity 0. The

latter are taken as given — as part of a settled trade infrastructure for the composite

commodity — and as such a feature which is not subject to change in our framework.

Therefore the user interface costs are not a general form, but rather a specific form of

(total) transaction costs. We refer to these costs as the use costs . In principle these

use costs depend on the characteristics of the provision system and the user, and on

the amount of the commodities traded.5 Since the agents hold no endowments of the

commodities subject to these use costs, the use costs only depend on the quantities

actually consumed.

Within our model there is a clear distinction between access and use costs. Indeed,

in our model, individuals always incur access costs; they do so to learn about the

trade institution and to get an idea of what is available for trading. This implies

that we assume that agents make these access costs to get acquainted with the trade

institution. However, after this learning process agents may opt to stay home and

not trade. In that case they do not incur any use costs.6

Formally, we introduce for each design γ ∈ Γ a use cost function tγ : A × Rm
+ →

Rm
+ such that, for every a ∈ A, every x0, x

′
0 ∈ R+, and every x1 ∈ R`

+, we have

tγ(a, x0, x1) = tγ(a, x′
0, x1). If a ∈ A is an agent and x1 ∈ R`

+ is her final consumption

5This is a standard assumption in the classical transaction costs general equilibrium literature.
We also refer to Foley (1970), Kurz (1974), Heller and Starr (1976), and Zhou, Sun and Yang (1999).

6We remark that in other models, individual agents have the option of also not incurring access
costs. In particular we refer to Gilles and Diamantaras (2003).
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bundle of traded commodities, then tγ(a, x0, x1) ∈ Rm
+ denotes the bundle of all

commodities, including the composite commodity 0, lost due to costs of transacting

through the trade institution of design γ. This cost is independent of the amount of

the composite commodity x0.

It is impossible to give a fully linear specification of use costs. This is due to the

special role assigned to the composite commodity. Commodity 0 is namely not subject

to the use cost function. The next example explores some alternative formulations

that introduce partial linearity of the use cost function.

Example 2.1 There are different ways to introduce an element of linearity in use

costs. We discuss three possibilities. Let a ∈ A and (x0, x1) ∈ Rm
+ .

Firstly, the use costs are linear in the vector of the ` traded commodities and do not

involve the composite commodity. Let λ ∈ [0, 1] and set tλγ(a, x0, x1) = (0, λx1) ∈ Rm
+ .

Secondly, the use costs do not involve the ` traded commodities but only the com-

posite commodity as a fraction of the length of the traded commodity vector. Let

µ ∈ [0, 1] and set tµγ(a, x0, x1) = (µ‖x1‖, 0) ∈ Rm
+ .

Thirdly, the use costs are a combination of the two previous cases. Let ν ∈ [0, 1] and

set tνγ(a, x0, x1) = (ν‖x1‖, νx1) ∈ Rm
+ . �

The definition of use costs allows us to distinguish gross consumption from net or

final consumption. For this purpose let x ∈ Rm
+ be the final consumption bundle of

agent a and tγ(a, x) the (general) use costs associated with design γ. We define the

function gγ : A×Rm
+ → Rm

+ by gγ(a, x) = x+tγ(a, x) and call it the gross consumption

function. Note that from the above gγ(a, 0) = 0 for every a ∈ A and γ ∈ Γ.

We do not assume that a trade institution induces any externalities other than the

three types of costs related to its establishment and its use introduced above. Thus,

there are no direct externalities in the sense that agents do not take into account the

design of a trade institution directly into their utility functions. For each agent a ∈ A

we represent a’s preferences by a utility function Ua : Rm
+ → R, which depends only

on the (net) quantities of the private goods consumed by that agent.7

We apply the following conventions. Let a ∈ A. We call the utility function

Ua : Rm
+ → R monotone if for all x, y ∈ Rm

+ , x � y implies Ua(x) > Ua(y) and strictly

7We can incorporate without much additional complication direct externalities regarding the
trade institution established in the economy. We refer to Diamantaras and Gilles (1996) and Dia-
mantaras, Gilles and Scotchmer (1996) for details.
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monotone if for all x, y ∈ Rm
+ , x > y implies Ua(x) > Ua(y), where we use the vector

inequalities �, >, and =.

Summarizing, we define an economy as follows:

Definition 2.2 A tuple E := 〈(A, Σ, µ), w, {Ua}a∈A, Y, (Γ, c, r, t)〉 is an economy

if for every design γ ∈ Γ, {Ua}a∈A and w are jointly measurable in the sense of

Hildenbrand (1974) and the corresponding cost functions rγ and tγ are integrable on

A and tγ is continuous on Rm
+ .

The concept of an allocation in this economy depends on the specification of the trade

institutional design. Initial resources cannot be spent only on consumption, but also

have to be spent on the maintenance of the trade institution itself. This is captured

in our notion of feasibility.

Definition 2.3 An allocation in E is a triple (γ, f, y) where γ ∈ Γ is a design of

the trade institution, f : A → Rm
+ is an integrable distribution of commodities for

final consumption, and y ∈ Y is a net production vector of the trade commodities.

An allocation (γ, f, y) is feasible if∫
f dµ +

∫
tγ(a, f(a)) dµ(a) +

∫
rγ dµ + c(γ) 5

∫
w dµ + y. (1)

A feasible allocation (γ, f, y) is Pareto efficient in E if there is no feasible allocation

(δ, g, z) such that for almost every agent a ∈ A : Ua(g(a)) = Ua(f(a)) and there is a

nonnegligible set E ∈ Σ with Ub(g(b)) > Ub(f(b)) for all b ∈ E.

We complete the initial development of the model with the introduction of the fol-

lowing hypothesis.

Axiom 2.4 For every design γ ∈ Γ, there exists a production plan y ∈ Y such that∫
rγ dµ + c(γ) �

∫
w dµ + y.

Together with the continuity of the use cost function and the hypothesis that zero

trade does not generate any use costs, Axiom 2.4 implies that there exists a feasible

allocation that assigns to each agent in a non-negligible set a non-zero consumption

bundle.
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3 Equilibrium concepts and results

We impose certain operational properties on use cost functions in order to allow for a

decentralized organization of decisions leading to a Pareto efficient allocations. The

next definition states the two most important properties.

Definition 3.1 Let E be an economy.

(a) For design γ ∈ Γ the use cost function tγ is said to be monotone if it is

component-wise nondecreasing, i.e., if for all bundles x, y ∈ Rm
+ and i ∈

M : xi = yi implies that tiγ(a, x) = tiγ(a, y) for every agent a ∈ A.

E is said to exhibit monotone use costs if for every design γ ∈ Γ the use

cost function tγ is monotone.

(b) E is said to exhibit bounded use costs if there exists a number K > 0 such

that for every design γ ∈ Γ, every bundle x ∈ Rm
+ , and every agent a ∈ A it

holds that tγ(a, x) 5 K x.

Next we address the question of decentralization of (first-best) Pareto efficient al-

locations. By means of an economy Eg which is derived from E and in which the

use costs are internalized into the utility function, we are able to decentralize Pareto

efficient allocations quite straightforwardly. Since the definitions in Eg have suitable

counterparts in E, we thus arrive at the desired decentralization of Pareto efficient

allocations.

Axiom 3.2 (Order preservation hypothesis) For every potential design γ ∈ Γ

the gross consumption function gγ is injective on Rm
+ .

Axiom 3.2 is crucial in the further construction of the model. We claim that it is not

very restrictive. An example not satisfying the order preservation hypothesis follows.

This example shows that only a rather specific, relatively irrelevant class of use cost

functions fails to satisfy this hypothesis. The point of this hypothesis — and, by

extension, of the analysis of this section — is to delineate the class of economies in

which first-best design of trade institutions is attainable under non-trivial use costs.

Further research has to make clear whether this hypothesis can be weakened.
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Example 3.3 Consider an situation where ` = 2 and an agent a ∈ A such that

tγ(a, x0, x1, x2) = (0, x2, x1). It follows that gγ(a, x0, x1, x2) = (x0, x1 + x2, x1 + x2),

which is not an injective (one-to-one) function. This form of the use cost function, in

which trading one good uses up another good, seems to be the most basic functional

form for which Axiom 3.2 fails. Obviously, we exclude such use cost functions. On

the other hand, this class of use cost functions seems less relevant for the purpose on

hand, in particular because use cost structures discussed in Example 2.1 satisfy the

order preservation hypothesis. �

Axiom 3.2 implies that gγ has an inverse. This inverse of gγ (a, ·) is the function

nγ : A×Rm
+ → Rm

+ defined by nγ(a, gγ(a, x)) = x. So, if agent a ∈ A obtains a bundle

y ∈ Rm
+ in the market, he actually consumes a quantity given by nγ(a, y) ∈ Rm

+ . The

function nγ is called the net consumption function derived from the use cost function

tγ. The following lemma summarizes the properties of the net consumption function.

For its proof we refer to Appendix A.

Lemma 3.4 Let γ ∈ Γ. Then:

(i) nγ(·, x) is integrable on (A, Σ, µ) for all x ∈ Rm
+ , and nγ(a, ·) is continuous

for all a ∈ A.

(ii) For every a ∈ A and x ∈ Rm
+ : nγ(a, x) 5 x.

(iii) For every a ∈ A and every bundle x ∈ Rm
+ there exists a bundle y ∈ Rm

+ with

nγ(a, y) � x.

(iv) If tγ is monotone, then for every a ∈ A and for all bundles x, y ∈ Rm
+ : x = y

(x > y) implies that nγ(a, x) = nγ(a, y) (nγ(a, x) > nγ(a, y)).

In the sequel we usually assume that use cost functions are monotone, and, thus, all

properties (i)–(iv) in Lemma 3.4 are satisfied.

Example 3.5 Consider the first case discussed in Example 2.1. For the given use

cost function tλγ it can easily be derived that for every a ∈ A and (x0, x1) ∈ Rm
+ the

net consumption function is given by

nλ
γ(a, x0, x1) =

(
0,

1

1 + λ
x1

)
.
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This implies that there is no fully linear relation between the net and gross consump-

tion vectors. Remark also that this net consumption function satisfies all properties

of Lemma 3.4. �

The gross utility function, denoted by Ūa : Rm
+ × Γ → R, is defined by Ūa(f, γ) =

Ua(nγ(a, f)) for every f ∈ Rm
+ . It internalizes both the benefits and the costs of the

interaction between provider and user. The next example shows that nonlinear use

costs functions can lead to non-convexities of the gross utility function, even though

the (original) utility function satisfies all regularity requirements.

Example 3.6 Let ` = 1 and denote the composite good by x and the traded

good by y. Choose any a ∈ A, x ∈ R+, and y ∈ R+, and set tγ(a, x, y) =(
0, 1

2

√
y
√

x + y − 1
2
y
)
. This implies that

gγ(a, x, y) = (x, y) + tγ(a, x, y) =
(
x, 1

2
y + 1

2

√
y
√

x + y
)
.

Observe that nγ(a, x, y) =
(
x, y − 1 + y

y+1

)
. Consider a linear utility function Ua(x, y) =

x + y. Then the gross utility function is given by:

Ūa(x, y) = Ua(nγ(a, x, y)) = x + y − 1 +
y

y + 1
.

This utility function represents non-convex preferences. �

The discussion on the gross representation is summarized as follows:

Definition 3.7 The tuple Eg := 〈(A, Σ, µ), w, {Ūa}a∈A, (Γ, c, r), Y 〉 is the gross rep-

resentation of the economy E = 〈(A, Σ, µ), w, {Ua}a∈A, (Γ, c, r, t), Y 〉 if for every po-

tential design γ ∈ Γ and every agent a ∈ A the gross utility function Ūa : Rm
+ ×Γ → R

is given by Ūa(·, γ) = Ua(nγ(a, ·)).

We emphasize that the gross representation Eg of an economy E incorporates the use

costs into the utility functions, but does not affect the representation of the setup

and access costs. Hence, the transition to the gross representation of some economy

incorporates the consumption and service technology into the preference structure.8

An alternative formulation would be to incorporate access costs as well as use costs

8For well established trade technologies this is evidently a natural occurrence: The gas used to
drive one’s car to and from downtown or the mall for shopping is not considered separately as a use
cost, but rather incorporated directly into the agent’s preference relation.
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into the gross representation. Our reason for not doing this is that access costs are

based on a deliberate act of accessing γ, whereas the use costs are related to the

nature of the facilities that γ provides.

Next we convert all definitions as employed in E to their appropriate counterparts

in the gross representation Eg. An allocation (γ, f, y) is redefined in the sense that

f : A → Rm
+ is an integrable distribution of private goods for gross consumption, i.e.,

before subtraction of use costs. An allocation (γ, f, y) is feasible in Eg if∫
f dµ +

∫
rγ dµ + c(γ) 5

∫
w dµ + y. (2)

It is clear that (2) is equivalent to (1). Since use costs depend on the trade institution

design chosen, the refinement of the notion of an allocation causes a redefinition of

the efficiency concept. A feasible allocation (γ, f, y) in Eg is Pareto efficient in Eg if

there is no other feasible allocation (δ, h, z) in Eg such that for almost every agent

a ∈ A, Ūa(h(a), δ) = Ūa(f(a), γ), and there exists some nonnegligible coalition E ∈ Σ,

µ(E) > 0, such that for every b ∈ E: Ūb(h(b), δ) > Ūb(f(b), γ). The proof of the

following lemma is trivial and therefore omitted.

Lemma 3.8 Let Eg be the gross representation of E. If an allocation (γ, f, y) in E
is Pareto efficient, then the corresponding gross allocation

(
γ, (gγ (a, f(a)))a∈A , y

)
is

Pareto efficient in Eg. If an allocation (γ, f, y) in Eg is Pareto efficient, then the

corresponding net allocation
(
γ, (nγ (a, f(a)))a∈A , y

)
is Pareto efficient in E.

We are interested in the question whether Pareto efficient allocations can be decen-

tralized through some appropriate price system. We introduce

∆ :=

{
p ∈ Rm

+

∣∣∣∣∣
m∑

i=1

pi = 1

}

as the simplex of all normalized price vectors.

Definition 3.9 A feasible allocation (γ, f, y) is a valuation equilibrium in Eg if

there exist a price system p : Γ → ∆, a production plan φ : Γ → Y with φ(γ) = y,

and a valuation system V : A× Γ → R such that

(i) for every δ ∈ Γ and every z ∈ Y , 0 = p(δ) · φ(δ) = p(δ) · z,
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(ii) for every δ ∈ Γ: V (·, δ) is integrable and for almost every agent a ∈ A :

V (a, δ) 5 p(δ) · w(a)− p(δ) · rδ(a),

(iii) in equilibrium there is budget balance, i.e.,∫
V (·, γ) dµ = p(γ) · c(γ),

(iv) γ minimizes the deficit p(δ) · c(δ)−
∫

V (·, δ) dµ over all δ ∈ Γ, and

(v) for almost every agent a in A, (f(a), γ) maximizes the gross utility function

Ūa on the budget set{
(h, δ) ∈ Rm

+ × Γ
∣∣ p(δ) · h + p(δ) · rδ(a) + V (a, δ) 5 p(δ) · w(a)

}
.

The notion of valuation equilibrium encompasses the requirement that all agents have

coordinated expectations in the sense that the price system p, the valuation system

V as well as the production plan φ are conjectural . Conjectural price systems were

introduced by Diamantaras and Gilles (1996).9 Using these price systems implies

that agents have common knowledge about the price and production changes that

occur when an alternative trade institutional design is implemented. Although this

requirement seems very demanding, Diamantaras, Gilles and Scotchmer (1996) show

that it is a necessary condition for the second welfare theorem.

The next result is the first welfare theorem for our model. For a proof of this

result we refer to Appendix B.

Theorem 3.10 Let E be an economy exhibiting monotone use costs such that for all

agents a ∈ A the utility function Ua is monotone. Then for each valuation equilibrium

(γ, f, y) in Eg its net representation
(
γ, (nγ (a, f(a)))a∈A , y

)
is Pareto efficient in E.

We remark that it is possible to formulate valuation equilibrium for the original

economy E by changing (v) in the definition of valuation equilibrium to refer to the

9Mas-Colell (1980) seminally introduced the notion of valuation equilibrium for economies with
collective goods, which he called public projects, and one private good. Diamantaras and Gilles
(1996) and Diamantaras, Gilles, and Scotchmer (1996) offer generalizations of valuation equilibrium
to accommodate multiple private goods and introduced conjectural price systems. Hammond and
Villar (1999) developed a similar modification of the valuation equilibrium concept which does not
require agents to use conjectural price systems. Their construction, however, relies on a central
authority that can threaten the destruction of resources out of equilibrium. Our concept does not
require this; in fact, it requires that the central authority always plan on a deficit out of equilibrium,
with the deficit equal to zero at equilibrium.
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net utility function, and by using the original feasibility condition for allocations, (1).

For this formulation the first welfare theorem goes through without imposing Axiom

3.2 and without significant changes in its proof.

The converse relationship, usually known as the second welfare theorem, can only

be achieved under certain additional requirements. The reasons are: (i) in general,

nonlinear use costs may cause non-convexities and thus failure of the decentralization

of Pareto efficient allocations (see Example 3.6); (ii) we have to avoid giving some

agents zero income. In order to circumvent these issues we consider an atomless

economy and distinguish between equilibrium and quasi-equilibrium.

Definition 3.11 A feasible allocation (γ, f, y) is a valuation quasi-equilibrium

in Eg if it satisfies conditions (i)–(iv) of Definition 3.9 and the following property:

(v’) For almost every agent a in A,

p(γ) · f(a) + p(γ) · rγ(a) + V (a, γ) = p(γ) · w(a)

and for every (h, δ) ∈ Rm
+ × Γ with Ūa(h, δ) > Ūa(f(a), γ) :

p(δ) · h + p(δ) · rδ(a) + V (a, δ) = p(δ) · w(a).

Finally, we say that a utility function U : Rm
+ → R has compact lower contour sets

if for every x̂ ∈ Rm
+ the set {x ∈ Rm

+ | U(x) 5 U (x̂)} is compact in the Euclidean

topology. For a proof of Theorem 3.12 we refer to Appendix C.

Theorem 3.12 Let E be an economy exhibiting bounded and monotone use costs

such that for every agent a ∈ A the utility function Ua is continuous and strictly

monotone. Then the following statements hold:

(a) If (A, Σ, µ) is atomless, then each Pareto efficient allocation in E can be sup-

ported as a valuation quasi-equilibrium in Eg.

(b) Additionally, assume that Ua, a ∈ A, have compact lower contour sets. If

(A, Σ, µ) is atomless, then each Pareto efficient allocation in E can be supported

as a valuation equilibrium with strictly positive prices in Eg.

Theorem 3.12 shows that conjectural price systems and valuations achieve Pareto

optimality in an economy with a trade institution under perfectly competitive behav-

ior. Thus, all agents are required to possess abilities to compute and anticipate price

changes resulting from the selection of an alternative design of the trade institution.
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4 Concluding remarks

Throughout this paper we have mainly formulated the normative concept of Pareto

optimality within the setting of the economy E. On the other hand, we have intro-

duced all equilibrium concepts based on coordination through a price mechanism in

its gross representation Eg, incorporating the use costs into the agents’ preferences.

This has a natural interpretation. Indeed, Loasby (2000, page 306) refers to this as

the “second function” of market organization: “by allowing us to cope with transac-

tions it frees our cognitive powers for other uses.” This is precisely represented by

the embedding of use costs into the preferences. While using the price mechanism,

agents incorporate these costs related to the use of trade technologies conveniently

into their consumption decisions, i.e., through optimization of a modified preference

relation over their budget set. On the other hand, while considering normative effi-

ciency concepts, it seems natural to consider all costs — also those related to the use

of certain trade technologies — explicitly rather than implicitly . This is exactly the

case with the original “net” representation E.

We can avoid going back and forth between the gross and net representations, if

we assume that all commodities, including the composite commodity, are traded via

the trade institution and impose linear use costs. Contrary to the cases discussed in

Example 2.1, in this case it is possible to formulate truly linear use costs. This case

has been developed further in Gilles, Diamantaras and Ruys (1994).

Future directions for research include the extension of the current model to include

a reconciliation of our model with other models of economies with transaction costs,

for example, the model of Zhou, Sun and Yang (1999). Also, applications of our

approach include positive studies of more specified models of the selection of trade

institutions. Here we are referring to the role of Axiom 3.2 in the current model and

the question whether we can weaken this requirement.

Most importantly, our analysis extends to the organization of a “service” economy,

which pertains to about seventy percent of GDP in advanced economies. A service

generalizes upon the standard Debreu-inspired concept of a commodity, in that it

is carried by a relation rather than by a physical unit that can be measured and

represented into a Euclidean space. Our approach requires us to go beyond the

regular Euclidean framework and use the fundamental notion of a non-measurable

collective project. For more details see Ruys(2002).
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Finally, by making Γ multidimensional, we could develop models in which specific

aspects of the trade institution are priced separately. For example, we could then

determine the correct valuation for a Parisian to access the Minitel separately from

accessing the Internet.10

Our work can be criticized for “only” being normative and for not mentioning the

monopoly power that market-makers have in practice. We feel that there is room for

a normative study of institutions for trading, not least so as to serve as a benchmark

against which more detailed, game-theoretic models may be compared. Regarding

monopoly power, we have assumed that the markets for the private commodities are

competitive. The details of organization of an institution γ are purposefully left in

the abstract. Details of the governance structure of the industry are part of the

definition of γ, as we have implicitly suggested in the introduction and explicitly

discussed in the previous two paragraphs. The monopoly rents possibly received by

market-makers could naturally be integrated into the setup cost c (γ) of γ. Viewed

from this angle, our model provides a capacious framework within which first- and

second-best analysis of specific economies could be conducted.
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Appendices

A Proof of Lemma 3.4

Proof of (i).
The integrability result is immediate. The continuity on compact subsets of Rm

+

follows on any compact subset of Rm
+ immediately from a standard result on inverses

of injective functions, for instance, Theorem 13 in Buck (1978, page 353) and is easily
extended to continuity over all of Rm

+ , since continuity is a local property. Indeed,
consider any point of Rm

+ and take any compact set containing this point. Then by
the continuity on compact sets, the function is continuous at this point, hence at all
points; so the function is continuous on Rm

+ .

Proof of (ii).
This is a direct consequence of the definitions.

Proof of (iii).
Let e = (1, . . . , 1) ∈ Rm

+ be the vector of ones. Take a ∈ A and x ∈ Rm
+ . Now

define y := gγ (a, x + e) = x+e+ tγ (a, x + e). Then nγ (a, y) = nγ (a, gγ (a, x + e)) =
x + e � x.

Proof of (iv).
Let tγ be monotone.

First, suppose that x = y and for some i: ni
γ (a, x) < ni

γ (a, y). Then by mono-
tonicity of tγ we have that tiγ (a, nγ (a, x)) 5 tiγ (a, nγ (a, y)). Hence,

xi = gi
γ (a, nγ (a, x)) =

= ni
γ (a, x) + tiγ (a, nγ (a, x)) <

< ni
γ (a, y) + tiγ (a, nγ (a, y)) =

= gi
γ (a, nγ (a, y)) = yi .

This is a contradiction and thus we conclude that nγ (a, x) = nγ (a, y).
Second, let x > y. Then from the above we conclude that nγ (a, x) = nγ (a, y).

Now suppose that nγ (a, x) = nγ (a, y). Then x = nγ (a, x) + tγ (a, nγ (a, x)) =
nγ (a, y) + tγ (a, nγ (a, y)) = y, which is a contradiction. This completes the proof
of (iv), and thus of the lemma.

B Proof of Theorem 3.10

This proof is a modification of the proof of the first welfare theorem in Diamantaras
and Gilles (1996).

Let (γ, f, y) be a valuation equilibrium in Eg with production plan φ with φ (γ) =
y, price system p and valuation function V . In order to show that (γ, nγ (f) , y) is
Pareto efficient in E it suffices to show that the gross allocation (γ, f, y) is Pareto
efficient in Eg.
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Suppose to the contrary that (γ, f, y) is not Pareto efficient in Eg. Then there exists
a feasible allocation (δ, g, z) with for all a in A:

Ua(nδ(a, g(a))) = Ua(nγ(a, f(a))),

and there is a nonnegligible coalition E such that for all b ∈ E,

Ub(nδ(b, g(b))) > Ub(nγ(b, f(b))).

Since (δ, g, z) is feasible it follows that∫
g dµ +

∫
rδ dµ + c(δ) 5

∫
w dµ + z. (3)

Condition (v) of Definition 3.9 and the monotonicity of the utility functions imply
that for all a in A we have p(δ) · g(a) + p(δ) · rδ(a) + V (a, δ) = p(δ) ·w(a) and for the
agents b ∈ E we have p(δ) · g(b) + p(δ) · rδ(b) + V (b, δ) > p(δ) · w(b). Hence,

p(δ) ·
∫

g dµ + p(δ) ·
∫

rδ dµ +

∫
V (·, δ) dµ > p(δ) ·

∫
w dµ. (4)

Since equation (3) can be written as

z +

∫
(w − rδ − g) dµ− c(δ) = 0, (5)

we have:

p(δ) · z + p(δ) ·
∫

(w − rδ − g) dµ− p(δ) · c(δ) = 0. (6)

Combining (4) with (6), we have:

p(δ) · z − p(δ) · c(δ) = −p(δ) ·
∫

(w − rδ − g) dµ > −
∫

V (·, δ) dµ,

which leads to:

p(δ) · z +

∫
V (·, δ) dµ− p(δ) · c(δ) > 0. (7)

Conditions (iii) and (iv) of Definition 3.9 now implies that

0 =

∫
V (·, γ) dµ− p(γ) · c(γ) =

∫
V (·, δ) dµ− p(δ) · c(δ). (8)

Now, from condition (i),

0 = p (γ) · y = p(δ) · φ(δ) = p(δ) · z. (9)

Combining (7), (8), and (9), we obtain:

0 = p (γ) · y +

∫
V (·, γ) dµ− p(γ) · c(γ) = p(δ) · z +

∫
V (·, δ) dµ− p(δ) · c(δ) > 0,

with the last inequality because of (7).
This is a contradiction proving the assertion.
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C Proof of Theorem 3.12

This proof is based on the structure of the proof of the second welfare theorem in
Diamantaras, Gilles and Scotchmer (1996). However, some major modifications are
called for. The main difference from that paper is that we have non-convexities in
preferences. As a result, our theorem is stated for a continuum of agents, requiring
substantial preparatory work and the use of Hildenbrand’s (1974) results regarding
convexification in a large economy.

Before we show Theorem 3.12 we prove two lemmata regarding some mathematical
properties of integrals of correspondences. The first concerns the openness of the
integral of an open valued correspondence.

Lemma A.1. Let n ∈ N and let F be an open valued and measurable correspondence
from A to Rn. Then

∫
F dµ is an open subset of Rn .

Proof. If
∫

F dµ = ∅, the assertion is true by definition. Hence, suppose that∫
F dµ 6= ∅.

Now, for every ε > 0 define

Bε := {x ∈ Rn | ‖x‖ < ε}

as the open ε-ball at the origin in Rn.
Let x̂ ∈

∫
F dµ. Then by definition there exists an integrable function f : A → Rn

with f(a) ∈ F (a), a ∈ A, and
∫

f dµ = x̂.
Since F is open valued we can define the function δ : A → R++ given by

δ(a) := inf {‖f(a)− x‖ |x ∈ Rn�F (a)} , a ∈ A.

Since F is measurable and f integrable, the function δ is measurable. By definition
δ(a) > 0 a.e. on A and {f(a)}+ Bδ(a) ⊂ F (a) a.e. on A.
Now let 0 < k < 1. Recall that the probability space (A, Σ, µ) is a regular Borel
measure space based on the locally compact Hausdorff space (A, T ). Thus, by Lusin’s
theorem (Halmos, 1950, page 243) there exists a T -compact set C ⊂ A with µ(A \
C) < k and δ continuous on C.
Since C is compact, δ is in fact uniformly continuous on C, and we may define
ε := 1

2
mina∈C δ(a) > 0. Thus by definition for every a ∈ C :

{f(a)}+ Bε ⊂ F (a) (10)

Define γ := µ(C). Clearly 0 < 1− k < γ < 1. We will now show that

x̂ + Bγ ε ⊂
∫

F dµ (11)

Take y ∈ Bγ ε. Then 1
γ

y ∈ Bε. Now we define the function g : A → Rn by

g(a) :=

{
f(a) + 1

γ
y a ∈ C

f(a) a ∈ A \ C
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Then g is an integrable selection of F with∫
g dµ =

∫
f dµ +

1

γ
y µ(C) = x̂ + y ∈

∫
F dµ.

Hence, we have established (11). �

The second lemma addresses the support of convex integrals of correspondences by
hyperplanes. This refers to the existence of optimal consumption bundles in budget
sets with a certain supporting price.

Lemma A.2. Let n ∈ N and let F be a measurable correspondence from (A, Σ, µ)
into Rn such that for every a ∈ A the set F (a) is closed, for every x ∈ F (a) :
{x} + Rn

+ ⊂ F (a), and there exists an integrable function b : A → Rn with b(a) a
lower bound for F (a), a.e. on A. If

∫
F dµ 6= ∅, then for every vector p ∈ Rn

++ there
exists an integrable selection g of F such that

(a)
∫

g dµ is on the boundary of
∫

F dµ such that p ·
∫

g dµ = inf p ·
∫

F dµ and

(b) for almost every a ∈ A it holds that p · g(a) = inf p · F (a).

Proof. First note that since F is bounded from below by b and measurable,
∫

F dµ
is bounded from below by

∫
b dµ. Furthermore, since

∫
F dµ 6= ∅, there exists an

integrable selection f : A → Rn of F .
Let p ∈ Rn

++ be a strictly positive vector. Then by Proposition D.6 of Hildenbrand
(1974, page 63) the function h : A → R given by h(a) := inf{p · x | x ∈ F (a)} is
integrable and

inf p ·
∫

F dµ =

∫
h dµ = p ·

∫
b dµ. (12)

Now consider the correspondence H from A into Rn given by

H(a) := {x ∈ F (a) | p · x 5 p · f(a) + 1}, (13)

where a ∈ A. By measurability of F it immediately follows that H is measurable.
Moreover, by comprehensiveness, boundedness and closedness of F (a), a ∈ A, H
takes almost everywhere nonempty and compact values. From its construction it is
easy to see that H is integrably bounded.
Now the mapping X on A into Rn defined by

X(a) := {x ∈ F (a) | p · x = h(a)} ⊂ H(a), a ∈ A, (14)

is measurable by the integrability of h. Since F (a) is closed and bounded from below
and p � 0, it is concluded that X(a) 6= ∅ for almost every a ∈ A. Since X(a) ⊂ H(a)
for any a ∈ A and H is integrably bounded, it follows that X is integrably bounded
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also. Thus, by, e.g., Corollary 17.1.4, Klein and Thompson (1984, page 186), X is
Aumann-integrable and by Aumann’s selection theorem there exists an integrable
selection g in X. By display (12) we conclude that

p ·
∫

g dµ =

∫
h dµ = inf p ·

∫
F dµ.

This shows that
∫

h dµ ∈ ∂
∫

F dµ and thus we have shown (a).
By definition of X it follows that p · g(a) = h(a) = inf p · F (a) for almost every

a ∈ A. Thus, we have shown (b). �

Proof of Theorem 3.12 (a)

Let
(
γ, f̆ , y

)
be a Pareto efficient allocation in E, so its gross representation given by

(γ, f, y) with f = gγ

(
f̆
)

is Pareto efficient in Eg. We now show that (γ, f, y) can be

supported as a valuation quasi-equilibrium in Eg. Let a ∈ A and δ ∈ Γ be arbitrary.
We define

F (a, δ) =
{
g ∈ Rm

+ |Ua(nδ(a, g)) > Ua(nγ(a, f(a)))
}

, and (15)

F (a, δ) =
{
g ∈ Rm

+ |Ua(nδ(a, g)) = Ua(nγ(a, f(a)))
}

. (16)

Note that F (a, δ) 6= ∅ by monotonicity of Ua and the monotonicity properties in
Lemma 3.4 regarding nγ and nδ. Moreover, it follows from continuity of Ua and the
net consumption functions that F (a, δ) is open and bounded from below by 0, but
not necessarily convex. By monotonicity of Ua it holds that for any x ∈ F (a, δ) :
{x}+Rm

+ ⊂ F (a, δ). Finally, F (a, δ) is the closure of F (a, δ), by the continuity of Ua,
and, except for being a closed set, F (a, δ) inherits all the properties of F (a, δ) listed.

Furthermore, from the measurability condition on the collection of utility func-
tions {Ua}a∈A we conclude that F (·, δ) as well as F (·, δ) are measurable correspon-
dences. Let

F (δ) :=

∫
F (·, δ) dµ +

{∫
rδ dµ + c(δ)−

∫
w dµ

}
. (17)

First we show that F (δ) 6= ∅. The nonemptiness of F (δ) follows from the monotonicity
properties of nδ, the monotonicity of the preferences, and the uniform boundedness
of the use cost functions. This is shown as follows: first, note that for every a ∈ A
by monotonicity of use costs and Lemma 3.4, nγ(a, f(a) + e) > nγ(a, f(a)), where
e = (1, . . . , 1) ∈ Rm

+ , and thus by strict monotonicity of the utility functions g(a) ∈
F (a, δ), where g(a) ∈ Rm

+ is defined by

g(a) := nγ (a, f(a) + e) + tδ (a, nγ (a, f(a) + e)) (18)

Hence,

nδ(a, g(a)) = nγ(a, f(a) + e) > nγ(a, f(a)).
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Note that g : A → Rm
+ is measurable by the integrability and continuity properties of

nγ and tδ. Next we show that g is integrably bounded, and thus integrable. Namely
by the boundedness of use costs there exists a K > 0 such that tδ(a, x) 5 K x for
every a ∈ A and, thus, by definition of g(a) we have

g(a) = nγ(a, f(a) + e) + tδ(a, nγ(a, f(a) + e))

5 f(a) + e + tδ(a, f(a) + e)

5 f(a) + e + K(f(a) + e) = (K + 1)(f(a) + e)

Since f is integrable, this implies that g is integrably bounded and thus integrable.
Thus

∫
g dµ ∈

∫
F (·, δ) dµ, which implies that F (δ) 6= ∅.

Second, because (A, Σ, µ) is atomless, it follows by Liapunov’s theorem that F (δ) is
convex. Furthermore, F (δ) is bounded from below. Also, from Lemma A.1 it follows
that F (δ) is open. Finally, we conclude that because (γ, f, y) is efficient, we have
Y ∩ F (δ) = ∅.
By Minkowski’s separating hyperplane theorem, e.g., Hildenbrand (1974, page 38),
applied to Y and F (δ), there exists a vector p(δ) ∈ ∆ such that

p(δ) · v = p(δ) · y′ for all v ∈ F (δ) and all y′ ∈ Y.

Since F (δ) is an open set and Y a pointed cone containing the origin, this implies that
p(δ) · v > 0 for all v ∈ F (δ). (The nonnegativity of p(δ) follows from the assumption
of free disposal on Y .)

In this fashion we have defined a function p : Γ → ∆. We now show that p satisfies
the conditions required by Definition 3.11.

Condition (i).
Construct a production plan φ : Γ → Y by selecting for every δ 6= γ one φ (δ) ∈ Y
such that p(δ) · φ (δ) = 0. (Because Y is a convex cone containing the origin and
satisfying free disposal and p(δ) is a nonnegative vector, such an φ (δ) indeed exists.)
Furthermore, we let φ (γ) = y. Note that from the definition of the set F (γ) and the
feasibility of the allocation (γ, f, y) it holds that y ∈ F (γ), where F (γ) is the closure
of the set F (γ). From this we immediately conclude that 0 5 p (γ) · y 5 0, i.e.,
p (γ) · φ (γ) = p (γ) · y = 0. Condition (i) now follows from the separation argument
above.

Let x(a, δ) ∈ R+ be defined such that

x(a, δ) :=

{
inf p(δ) · F (a, δ) if δ 6= γ

p(γ) · f(a) if δ = γ

By integrability of infima as stated in, e.g., Proposition 18.1.8 in Klein and Thompson
(1984, page 200), it follows that for every δ ∈ Γ the function x(·, δ) : A → R is
integrable and∫

x(·, δ) dµ = inf p(δ) ·
∫

F (·, δ) dµ.
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Hence,∫
x(·, δ) dµ + p(δ) ·

∫
rδ dµ + p(δ) · c(δ)− p(δ) ·

∫
w dµ = inf p(δ) · F (δ) = 0.

Finally, we introduce the valuation function V : A× Γ → R by

V (a, δ) = p(δ) · w(a)− p(δ) · rδ(a)− x(a, δ), δ 6= γ, and

V (a, γ) = p(γ) · w(a)− p(γ) · rγ(a)− p (γ) · f (a) .

Note that V (a, δ) is finite for almost every agent a in A and every δ ∈ Γ.
We now check the remaining requirements of Definition 3.11.

Condition (ii)
Let δ ∈ Γ. Since x(·, δ) and f are integrable on A, the valuation function as introduced
above is also integrable. Furthermore, since F (a, δ) ⊂ Rm

+ and p(δ) = 0, we conclude
that x(a, δ) = 0 for every a ∈ A. Thence, by definition V (a, δ) 5 p(δ) · w(a)− p(δ) ·
rδ(a) for almost every a ∈ A and all δ ∈ Γ.

Condition (iii)
By the feasibility of (γ, f, y) and the definition of V ,∫

V (·, γ) dµ = p(γ) ·
∫

w dµ− p(γ) ·
∫

rγ dµ− p(γ) ·
∫

f dµ

= p(γ) · c(γ)− p (γ) · y = p(γ) · c(γ).

If the second relation is not an equality, then there exists a non-negligible set of agents
to whom we can feasibly redistribute some private goods to make them better off,
because of the strict monotonicity of the utility functions and the monotonicity of use
costs (Lemma 3.4). This contradicts efficiency, hence we have p(γ) ·

∫
w dµ − p(γ) ·∫

rγ dµ− p(γ) ·
∫

f dµ = p(γ) · c(γ).

Condition (iv)
By construction, in case δ 6= γ:∫

x(·, δ) dµ + p(δ) ·
∫

rδ dµ + p(δ) · c(δ) = p(δ) ·
∫

w dµ.

From this we obtain∫
V (·, δ) = p(δ) ·

∫
w dµ− p(δ) ·

∫
rδ dµ−

∫
x(·, δ) dµ 5 p(δ) · c(δ).

Thus, together with (iii) as shown above we conclude that condition (iv) of Definition
3.11 is satisfied for the price vector p(δ) and valuation V (·, δ), δ ∈ Γ.

Condition (v’)
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First note that by definition of V (a, γ) it immediately follows that

p(γ) · f(a) + p(γ) · rγ(a) + V (a, γ) = p(γ) · w(a).

Now let δ 6= γ and g ∈ Rm
+ such that Ūa(g, δ) > Ūa(f(a), γ). Then by definition

g ∈ F (a, δ) and, since F (a, δ) is the closure of F (a, δ), p(δ) · g = x(a, δ). Thus,

p(δ) · g + p(δ) · rδ(a) + V (a, δ) = p(δ) · w(a).

This shows condition (v’) for valuation quasi-equilibrium.

Proof of Theorem 3.12 (b)
By Theorem 3.12(a) shown above the Pareto efficient allocation (γ, f, y) can be sup-
ported as a valuation quasi-equilibrium defined in Definition 3.11. To show assertion
(b) we only have to show that, under the given conditions, property (v) of Definition
3.9 is satisfied.

Let φ : Γ → Y be the production plan, p : Γ → ∆ be the price system and
V : A× Γ → R the valuation system as constructed in the proof of Theorem 3.12(a)
given above. Now define for every a ∈ A

B(a, p, V ) :=
{

(g, δ) ∈ Rm
+ × Γ

∣∣ p(δ) · g + p(δ) · rδ(a) + V (a, δ) 5 p(δ) · w(a)
}

as a’s budget set. It is our goal to show that (f(a), γ) is Ūa maximal in B(a, p, V ).

Let δ ∈ Γ. First we show that p(δ) � 0. Define for every a ∈ A

Bδ(a) := {g ∈ Rm
+ | p(δ) · g + p(δ) · rδ(a) + V (a, δ) 5 p(δ) · w(a)} and

B′
δ(a) := {g ∈ Rm

+ | p(δ) · g + p(δ) · rδ(a) + V (a, δ) < p(δ) · w(a)}.

By Axiom 2.4
∫

rδ dµ + c(δ) �
∫

w dµ + z for some z ∈ Y . Since p(δ) > 0 and
p (δ) · z 5 0 it follows that

p(δ) ·
∫

rδ dµ +

∫
V (·, δ) dµ < p(δ) ·

∫
w dµ + p (δ) · z 5 p(δ) ·

∫
w dµ.

This implies that there exists a nonnegligible set E ∈ Σ, µ(E) > 0, such that for
every a ∈ E : p(δ) · [w(a)− rδ(a)] > V (a, δ). Thus, we may conclude that B′

δ(a) 6= ∅
for every agent a ∈ E.

Let a ∈ E. From the proof of property 3.11(v’) given in the proof of Theorem
3.12(a), it is immediately deduced that for all g ∈ B′

δ(a) it holds that Ūa(g, δ) 5
Ūa(f(a), γ). Now take g ∈ Bδ(a), then there exists a sequence (gn)n∈N in B′

δ(a) with
gn → g. By continuity of Ūa(·, δ) this implies that Ūa(g, δ) 5 Ūa(f(a), γ). Thus, for
every g ∈ Bδ(A) : Ūa(g, δ) 5 Ūa(f(a), γ).

Now suppose pi(δ) = 0 for some i ∈ {0, 1, . . . , `}. We claim that for every x > 0
there exists a bundle h ∈ Bδ(a) with ni

δ(a, h) > x.
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Indeed let ĥ ∈ Bδ(a) be such that ĥi > 0. Now define h := ĥ+(K+1)x ei ∈ Bδ(a),
where ei is the i-th unit vector and K is the given bound for the use costs.

Now for any h′ ∈ Rm
+ it holds that

gδ(a, h) = h′ + tδ(a, h′) 5 (K + 1)h′ (19)

by the boundedness of the use costs. Hence, by the monotonicity properties of nδ,
h′ = nδ (a, gγ(a, h′)) 5 nδ (a, (K + 1)h′).
With the definition of h above this leads to

ni
δ (a, h) = ni

δ

(
a, ĥ + (K + 1)x ei

)
=

1

K + 1
ĥi + x > x.

Since Ua has compact lower contour sets, {x ∈ Rm
+ | Ua(x) 5 Ūa(f(a), γ)} is compact,

and therefore bounded. But pi(δ) = 0 together with the claim implies that there exists
a bundle g ∈ Bδ(a) with Ūa(g, δ) = Ua(nδ(a, g)) > Ūa(f(a), γ)). This contradicts that
for g ∈ Bδ(A) Ūa(g, δ) 5 Ūa(f(a), γ) as derived above. Since this can be repeated for
any a ∈ E and E is nonnegligible, this implies that p(δ) � 0.

The argument above can be repeated for every δ ∈ Γ, deriving that p is a strictly
positive price system. Now let δ 6= γ. Recall that for every a ∈ A we defined

F (a, δ) :=
{
g ∈ Rm

+ |Ua(nδ(a, g)) = Ua(nγ(a, f(a)))
}

.

Noting that the correspondence F (·, δ) and the price vector p (δ) � 0 satisfies all
requirements, we may apply Lemma A.2, implying the existence of an integrable
selection g (·, δ) : A → Rm

+ such that for almost every a ∈ A: p (δ) · g (a, δ) =
inf p (δ) · F (a, δ) = x (a, δ) and

p (δ) ·
∫

g (·, δ) dµ = inf p (δ) ·
∫

F (·, δ) dµ

For γ we introduce g (·, γ) : A → Rm
+ by g (a, γ) = f (a), a ∈ A. Thus, for any δ ∈ Γ

we can reformulate V (·, δ) by

V (a, δ) = p (δ) · [w (a)− rδ (a)− g (a, δ)] .

Furthermore, from continuity of preferences Ua of a ∈ A: Ua(nδ(a, g (a, δ))) =
Ua(nγ(a, f(a))). We now check condition (v) of Definition 3.9.

From condition (v) of Definition 3.11 shown above in the proof of Theorem 3.12(a)
for φ, p and V it immediately follows that f (a) is Ūa-maximal in Bγ (a). Next let
δ 6= γ. Then by definition g (a, δ) ∈ Bδ (a). Now for x ∈ Rm

+ with Ua (nδ (a, x)) >
Ua(nγ(a, f(a))) = Ua(nδ(a, g (a, δ))) we have by definition of g (a, δ) as the supporting
point at F (a, δ) of the hyperplane defined by p (δ) that p (δ) ·x > p (δ) ·g (a, δ). Thus,
by definition of V (a, δ) this implies that x /∈ Bδ (a). Thus, we conclude that g (a, δ)
is Ūa-maximal in Bδ (a). This implies that (f(a), γ) is Ūa-maximal in B(a, p, V ),
showing condition (v) of Definition 3.9.

This completes the proof of Theorem 3.12.
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